This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A062857 #18 Oct 16 2023 23:29:53 %S A062857 1,2,4,6,12,12,18,20,30,30,40,40,60,60,72,72,90,90,120,120,140,140, %T A062857 168,168,180,180,210,210,252,252,280,280,315,315,336,336,360,360,420, %U A062857 420,504,504,560,560,630,630,672,672,720,720,792,792,840,840,924,924,990 %N A062857 Size of smallest square multiplication table which contains some number at least n times. %C A062857 a(n) is the least number m such that there exists k with 1 <= k <= m^2 such that k has at least n divisors t with k/m <= t <= m. - _Robert Israel_, Jan 30 2017 %e A062857 a(7)=18 because the 18 X 18 multiplication table is the smallest to contain a product of frequency 7 (namely the number A062856(7)=36). %t A062857 a[1] = 1; a[n_] := a[n] = For[m = a[n-1], True, m++, T = Table[i j, {i, m}, {j, m}] // Flatten // Tally; sel = SelectFirst[T, #[[2]] >= n&]; If[sel != {}, Print[n, " ", m, " ", sel[[1]]]; Return[m]]]; %t A062857 Table[a[n], {n, 1, 60}] (* _Jean-François Alcover_, Mar 25 2019 *) %o A062857 (MATLAB) %o A062857 N = 1000; % to get all terms with a(n) <= N %o A062857 M = sparse(1,N^2); %o A062857 A(1) = 1; %o A062857 imax = 1; %o A062857 for k = 2:N %o A062857 M(k*[1:k-1]) = M(k*[1:k-1])+2; %o A062857 M(k^2) = 1; %o A062857 newimax = max(M); %o A062857 A(imax+1:newimax) = k; %o A062857 imax = newimax; %o A062857 end %o A062857 A % _Robert Israel_, Jan 30 2017 %o A062857 (Python) %o A062857 from itertools import count %o A062857 from collections import Counter %o A062857 def A062857(n): %o A062857 if n == 1: return 1 %o A062857 c = Counter() %o A062857 for m in count(1): %o A062857 for i in range(1,m): %o A062857 ij = i*m %o A062857 c[ij] += 2 %o A062857 if c[ij]>=n: %o A062857 return m %o A062857 c[m*m] = 1 # _Chai Wah Wu_, Oct 16 2023 %Y A062857 The least such number is A062856(n). %Y A062857 Cf. A027424, A062851, A062854, A062855, A062856, A062858, A062859. %K A062857 nonn %O A062857 1,2 %A A062857 Ron Lalonde (ronronronlalonde(AT)hotmail.com), Jun 25 2001 %E A062857 More terms from _Don Reble_, Nov 08 2001 %E A062857 Name clarified by _Robert Israel_, Jan 30 2017