This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A062868 #46 Oct 29 2020 15:09:16 %S A062868 1,1,2,4,14,46,282,1394,12658,83122,985730,8012962,116597538, %T A062868 1127575970,19410377378,217492266658,4320408974978,55023200887938, %U A062868 1238467679662722,17665859065690754,444247724347355554,7015393325151055906,194912434760367113570,3375509056735963889634 %N A062868 Number of permutations of degree n with barycenter 0. %C A062868 The barycenter or signcenter of a permutation is the sum of the signs of the difference between initial and final positions of the objects. %H A062868 Alois P. Heinz, <a href="/A062868/b062868.txt">Table of n, a(n) for n = 0..450</a> (first 151 terms from Maxwell Jiang) %F A062868 a(n) = Sum_{k=0..floor(n/2)} binomial(n, n-2*k)*A320337(k). - _Maxwell Jiang_, Dec 19 2018 (added by editors) %F A062868 a(n) ~ sqrt(3) * (1 + exp(-2)*(-1)^n) * n^n / exp(n). - _Vaclav Kotesovec_, Oct 29 2020 %e A062868 (4,1,3,5,2) has difference (3,-1,0,1,-3) and signs (1,-1,0,1,-1) with total 0. %p A062868 b:= proc(s, t) option remember; (n-> `if`(abs(t)>n, 0, `if`(n=0, 1, %p A062868 add(b(s minus {j}, t+signum(n-j)), j=s))))(nops(s)) %p A062868 end: %p A062868 a:= n-> b({$1..n}, 0): %p A062868 seq(a(n), n=0..14); # _Alois P. Heinz_, Jul 31 2018 %t A062868 E1[n_ /; n >= 0, 0] = 1; %t A062868 E1[n_, k_] /; k < 0 || k > n = 0; %t A062868 E1[n_, k_] := E1[n, k] = (n-k) E1[n-1, k-1] + (k+1) E1[n-1, k]; %t A062868 b[n_] := Sum[(-1)^(n-k) E1[n+k, n] Binomial[2n, n-k], {k, 0, n}]; %t A062868 a[n_] := Sum[Binomial[n, n-2k] b[k], {k, 0, n/2}]; %t A062868 a /@ Range[0, 150] (* _Jean-François Alcover_, Oct 29 2020, after _Peter Luschny_ in A320337 *) %Y A062868 Column k=0 of A062866 or of A062867. %Y A062868 Cf. A179567, A196687, A196688, A320337. %K A062868 nice,nonn %O A062868 0,3 %A A062868 _Olivier Gérard_, Jun 26 2001 %E A062868 One more term from _Vladeta Jovovic_, Jun 28 2001 %E A062868 a(11)-a(14) from _Hugo Pfoertner_, Sep 23 2004 %E A062868 a(15)-a(18) from _R. H. Hardin_, Jul 18 2010 %E A062868 a(19)-a(22) from _Kyle G Hess_, Jul 30 2018 %E A062868 a(0)=1 prepended by _Alois P. Heinz_, Jul 30 2018 %E A062868 Terms a(23) and beyond from _Maxwell Jiang_, Dec 19 2018