This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A062870 #59 Oct 02 2022 12:49:05 %S A062870 1,1,1,3,4,20,36,252,576,5184,14400,158400,518400,6739200,25401600, %T A062870 381024000,1625702400,27636940800,131681894400,2501955993600, %U A062870 13168189440000,276531978240000,1593350922240000,36647071211520000,229442532802560000,5736063320064000000 %N A062870 Number of permutations of degree n with greatest sum of distances. %C A062870 Number of possible values is 1,2,3,5,7,10,13,17,21,... which I conjecture to be A033638. Maximum distance divided by 2 is the same minus one, i.e., 0,1,2,4,6,9,12,16,20,... which seems to be A002620. %H A062870 Georg Fischer, <a href="/A062870/b062870.txt">Table of n, a(n) for n = 0..506</a> (first 301 terms from _Alois P. Heinz_) %H A062870 Max Alekseyev, <a href="/A062870/a062870.txt">Proof of conjecture</a> %H A062870 T. Kyle Petersen and Bridget Eileen Tenner, <a href="http://arxiv.org/abs/1202.4765">The depth of a permutation</a>, arXiv:1202.4765 [math.CO], 2012. %H A062870 T. Kyle Petersen and Bridget Eileen Tenner, <a href="http://dx.doi.org/10.4310/JOC.2015.v6.n1.a9">The depth of a permutation</a>, Journal of Combinatorics 6 (2015), pp. 145--178. %F A062870 a(n) = (n/2)!^2 if n is even else n*((n-1)/2)!^2, cf. A092186. - Conjectured by _Vladeta Jovovic_, Aug 21 2007; proved (see the link) by _Max Alekseyev_, Aug 21 2007 %F A062870 a(n) = A062869(n,floor(n^2/4)) for n>=1. - _Alois P. Heinz_, Oct 02 2022 %e A062870 (4,3,1,2) has distances (3,1,2,2), sum is 8 and there are 3 other permutations of degree 4 {3, 4, 1, 2}, {3, 4, 2, 1}, {4, 3, 2, 1} with this sum which is the maximum possible. %p A062870 a:= proc(n) option remember; `if`(n<2, 1+n*(n-1), %p A062870 (n*((n-1)^2*(3*n-4)*a(n-2)-4*a(n-1)))/(4*(n-1)*(3*n-7))) %p A062870 end: %p A062870 seq(a(n), n=0..30); # _Alois P. Heinz_, Jan 16 2014 %t A062870 a[n_?EvenQ] := (n/2)!^2; a[n_?OddQ] := n*((n-1)/2)!^2; Table[a[n], {n, 0, 30}] (* _Jean-François Alcover_, Apr 15 2015 *) %o A062870 (PARI) for(k=0,20,print1((2*k+1)*k!^2","(k+1)!^2",")) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Dec 27 2007 %Y A062870 Cf. A002620, A062866, A062867, A062869. %Y A062870 A007590(n) is the greatest sum of distances for a permutation of degree n. - _Dmitry Kamenetsky_, Nov 14 2017 %K A062870 nonn %O A062870 0,4 %A A062870 _Olivier Gérard_, Jun 26 2001 %E A062870 a(10)-a(14) from _Hugo Pfoertner_, Sep 23 2004 %E A062870 More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Dec 27 2007