cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062878 a(n) is the position of A050614(n) in A062877.

This page as a plain text file.
%I A062878 #20 Apr 14 2023 19:53:42
%S A062878 1,3,6,15,24,60,102,255,384,960,1632,4080,6168,15420,26214,65535,
%T A062878 98304,245760,417792,1044480,1579008,3947520,6710784,16776960,
%U A062878 25166208,62915520,106956384,267390960,404232216,1010580540,1717986918,4294967295,6442450944
%N A062878 a(n) is the position of A050614(n) in A062877.
%C A062878 In binary this sequence looks like 1, 11, 110, 1111, 11000, 111100, 1100110, 11111111, 110000000, 1111000000, 11001100000, 111111110000, 1100000011000, 11110000111100, 110011001100110, ...
%C A062878 Sequence A282387 may be the same, but I cannot prove nor disprove this beyond a(22). - _Robert Price_, Feb 13 2017
%C A062878 Agrees with A282387 for at least 1000 terms. - _Sean A. Irvine_, Apr 14 2023
%F A062878 a(2^n-1) = 2^(2^n) - 1. - _Philippe Deléham_, Apr 05 2007
%F A062878 a(n) = Sum_{k=0..n} A127872(n,k)*2^k. - _Philippe Deléham_, Oct 09 2007
%t A062878 A050614 = Table[k = Floor[Log[2, n + 1]]; Product[j = 2^(i + 1); l = Fibonacci[j + 1] + Fibonacci[j - 1]; If[BitAnd[2^i, n] == 0, b = 0, b = 1]; l^b, {i, 0, k}], {n, 0, 200}]; A062877 = Union[Total /@ Subsets[Fibonacci[Range[1, 46, 2]]]]; Flatten[Table[Position[ A062877, A050614[[i]] ] - 1, {i, 1, 25}]] (* _Robert Price_, Feb 13 2017 *)
%K A062878 nonn
%O A062878 0,2
%A A062878 _Antti Karttunen_, Jun 26 2001
%E A062878 a(15)-a(22) from _Robert Price_, Feb 13 2017
%E A062878 More terms from _Sean A. Irvine_, Apr 14 2023