A062886 Smallest multiple of 2n+1 with property that digits are odd and each digit is two more (mod 10) than the previous digit; or 0 if no such number exists.
1, 3, 5, 7, 9, 913, 13, 135, 357, 57, 357, 1357, 0, 135, 9135, 91357, 9135791357913, 35, 13579, 13579135791, 7913, 3579135791357913, 135, 913579135791, 79135, 357, 1357913, 7913579135, 57, 1357, 7913579135791357913579, 9135, 791357913579135791357913579135
Offset: 0
Examples
a(7) = 135 = 3*(2*7 + 1) has increasing odd digits. a(12) does not exist because a number in base 10 divisible by 25 ends with 00, 25, 50 or 75, so a(12)=0.
Links
- Nathaniel Johnston, Table of n, a(n) for n = 0..500
Programs
-
Maple
A062886 := proc(n) local d,j,k,p,val: p:=2*n+1: if(p mod 25 = 0)then return 0: fi: for j from 1 do for d from 1 to 9 by 2 do val:=0: for k from 1 to j do val:=val+10^(j-k)*((d+2*(k-1)) mod 10): od: if(val mod p = 0)then return val: fi: od: od: end: seq(A062886(n),n=0..30); # Nathaniel Johnston, May 19 2011
-
Mathematica
a[n_] := Module[{d, j, k, p, val}, p = 2*n+1; If[p ~Mod~ 25 == 0, Return[0]]; For[j = 1, True, j++, For[d = 1, d <= 9, d += 2, val = 0; For[k = 1, k <= j, k++, val = val + 10^(j-k)*((d + 2*(k-1)) ~Mod~ 10)]; If[val ~Mod~ p == 0, Return[val]]]]]; Table[a[n], {n, 0, 34}] (* Jean-François Alcover, Apr 17 2025, after Nathaniel Johnston *)
Extensions
More terms from Sascha Kurz, Mar 23 2002
a(6) and example corrected by, and terms after a(15) from Nathaniel Johnston, May 19 2011
Comments