cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062890 Number of quadrilaterals that can be formed with perimeter n. In other words, number of partitions of n into four parts such that the sum of any three is more than the fourth.

This page as a plain text file.
%I A062890 #50 Jan 02 2021 08:35:35
%S A062890 0,0,0,0,1,1,1,2,3,4,5,7,8,11,12,16,18,23,24,31,33,41,43,53,55,67,69,
%T A062890 83,86,102,104,123,126,147,150,174,177,204,207,237,241,274,277,314,
%U A062890 318,358,362,406,410,458,462,514,519,575,579,640,645,710
%N A062890 Number of quadrilaterals that can be formed with perimeter n. In other words, number of partitions of n into four parts such that the sum of any three is more than the fourth.
%C A062890 Partition sets of n into four parts (sides) such that the sum of any three is more than the fourth do not uniquely define a quadrilateral, even if it is further constrained to be cyclic. This is because the order of adjacent sides is important. E.g. the partition set [1,1,2,2] for a perimeter n=6 can be reordered to generate two non-congruent cyclic quadrilaterals, [1,2,1,2] and [1,1,2,2], where the first is a rectangle and the second a kite. - _Frank M Jackson_, Jun 29 2012
%H A062890 Seiichi Manyama, <a href="/A062890/b062890.txt">Table of n, a(n) for n = 0..10000</a> (terms 0..1000 from T. D. Noe)
%H A062890 G. E. Andrews, P. Paule and A. Riese, <a href="http://www.risc.uni-linz.ac.at/research/combinat/risc/publications/#ppaule">MacMahon's partition analysis III. The Omega package</a>, p. 19.
%H A062890 G. E. Andrews, P. Paule and A. Riese, <a href="http://www.risc.jku.at/publications/download/risc_163/PAIX.pdf">MacMahon's Partition Analysis IX: k-gon partitions</a>, Bull. Austral Math. Soc., 64 (2001), 321-329.
%H A062890 <a href="/index/Rec#order_13">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,-1,1,-1,0,0,-1,1,-1,1,1,-1).
%F A062890 G.f.: x^4*(1+x+x^5)/((1-x^2)*(1-x^3)*(1-x^4)*(1-x^6)).
%F A062890 a(2*n+6) = A026810(2*n+6) - A000601(n), a(2*n+7) = A026810(2*n+7) - A000601(n) for n >= 0. - _Seiichi Manyama_, Jun 08 2017
%F A062890 From _Wesley Ivan Hurt_, Jan 01 2021: (Start)
%F A062890 a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-4) - a(n-5) - a(n-8) + a(n-9) - a(n-10) + a(n-11) + a(n-12) - a(n-13).
%F A062890 a(n) = Sum_{k=1..floor(n/4)} Sum_{j=k..floor((n-k)/3)} Sum_{i=j..floor((n-j-k)/2)} sign(floor((i+j+k)/(n-i-j-k+1))). (End)
%e A062890 a(7) = 2 as the two partitions are (1,2,2,2), (1,1,2,3) and in each sum of any three is more than the fourth.
%t A062890 CoefficientList[Series[x^4*(1+x+x^5)/((1-x^2)*(1-x^3)*(1-x^4)*(1-x^6)), {x, 0, 60}], x] (* _Frank M Jackson_, Jun 09 2017 *)
%Y A062890 Number of k-gons that can be formed with perimeter n: A005044 (k=3), this sequence (k=4), A069906 (k=5), A069907 (k=6), A288253 (k=7), A288254 (k=8), A288255 (k=9), A288256 (k=10).
%K A062890 nonn,easy
%O A062890 0,8
%A A062890 _Amarnath Murthy_, Jun 29 2001
%E A062890 More terms from _Vladeta Jovovic_ and _Dean Hickerson_, Jul 01 2001