cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062995 Doubly exponentiate the Bessel function I(0,2*sqrt(z)).

This page as a plain text file.
%I A062995 #15 May 02 2025 07:57:32
%S A062995 1,1,5,49,789,18741,612383,26218956,1419303189,94531262917,
%T A062995 7582017897795,719690829785016,79691175192777855,10170046938232956048,
%U A062995 1480481369981439216732,243659154929530351237884,44987315567879408248084629,9254611189980167520327621253
%N A062995 Doubly exponentiate the Bessel function I(0,2*sqrt(z)).
%H A062995 <a href="/index/Be#Bessel">Index entries for sequences related to Bessel functions or polynomials</a>
%F A062995 Hypergeometric generating function for a(n): exp(exp(BesselI(0, 2*sqrt(z))-1)-1) = Sum_{n>=0} a(n)*z^n/(n!)^2.
%t A062995 nmax = 20; CoefficientList[Series[E^(-1 + E^(-1 + BesselI[0, 2*Sqrt[x]])), {x, 0, nmax}], x] * Range[0, nmax]!^2 (* _Vaclav Kotesovec_, Jun 09 2019 *)
%Y A062995 Cf. A023998.
%K A062995 easy,nonn
%O A062995 0,3
%A A062995 _Karol A. Penson_, Jun 28 2001
%E A062995 More terms from _Vaclav Kotesovec_, Jun 09 2019