cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A063022 Reversion of y - y^2 - y^3 - y^5.

Original entry on oeis.org

0, 1, 1, 3, 10, 39, 161, 698, 3126, 14360, 67276, 320229, 1544257, 7528577, 37044530, 183733552, 917598103, 4610484729, 23289784660, 118209987295, 602556082765, 3083273829240, 15832177371585, 81554320766310, 421320423560400, 2182395044437686, 11332298321692704
Offset: 0

Views

Author

Olivier Gérard, Jul 05 2001

Keywords

Crossrefs

Programs

  • Maple
    with(gfun):
    F:= RootOf(y-y^2-y^3-y^5-x,y):
    DE:=holexprtodiffeq(F,g(x)):
    Rec:= diffeqtorec(DE,g(x),a(n)):
    f:= rectoproc(Rec,a(n),remember):
    map(f, [$0..50]); # Robert Israel, Jan 08 2019
  • Mathematica
    CoefficientList[InverseSeries[Series[y - y^2 - y^3 - y^5, {y, 0, 30}], x], x]
  • Sage
    def Reversion(gf, n=30):
        R = PowerSeriesRing(QQ, 'x', n)
        x = R.gen().O(n)
        return list(R(gf).reverse())
    Reversion(x - x^2 - x^3 - x^5, 24) # Peter Luschny, Jan 08 2019

Formula

D-finite with recurrence 575*n*(n-1)*(n-2)*(n-3)*(20979233391541*n -77947280254859)*a(n) -(n-1)*(n-2)*(n-3)*(61583500097488301*n^2 -316279381660643613*n +324795527443572336)*a(n-1) -(n-2)*(n-3)*(38717301341634153*n^3 -324199735605145484*n^2 +891613204581594443*n -818427098922228360)*a(n-2) +5*(n-3)*(15150509582201525*n^4 -167218351234002005*n^3 +671920281600084880*n^2 -1156419009962856700*n +711178431524070144)*a(n-3) +5*(-11728771987556875*n^5 +177923469670928750*n^4 -1042517573106816125*n^3 +2912399220423080050*n^2 -3791544816675160464*n +1751906653132562208)*a(n-4) -125*(5*n-26)*(5*n-22)*(5*n-23)*(73773273715*n-209652025983)*(5*n-24)*a(n-5)=0. - R. J. Mathar, Mar 21 2022