This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A063079 #39 May 18 2020 04:03:09 %S A063079 1,5,63,429,12155,88179,1300075,9694845,583401555,4418157975, %T A063079 67282234305,514589420475,15801325804719,121683714103007, %U A063079 1879204156221315,14544636039226909,1804857108504066435 %N A063079 Bisection of A001790. %H A063079 Vincenzo Librandi, <a href="/A063079/b063079.txt">Table of n, a(n) for n = 1..200</a> %H A063079 Petros Hadjicostas, <a href="/A334907/a334907.pdf">Proof of the claim A334907(n)/n! = a(n+1)/A060818(n)</a>, 2020. %F A063079 Numerators of binomial(2*n-3/2, -1/2). %F A063079 Because A334907(n)/n! = a(n+1)/A060818(n) for n >= 0, the o.g.f. of a(n+1)/A060818(n), for n >= 0, is (sqrt(1 + sqrt(8*s)) - sqrt(1 - sqrt(8*s)))/sqrt(8*s * (1 - 8*s)), which is the e.g.f. of A334907 (see the link above for a proof). - _Petros Hadjicostas_, May 16 2020 %p A063079 seq(numer(binomial(2*n-3/2,-1/2)), n=1..20); %t A063079 Numerator[Binomial[2Range[20]-3/2,-(1/2)]] (* _Harvey P. Dale_, Feb 27 2012 *) %Y A063079 Cf. A001790, A060818, A334907. Other bisection gives A061548. %K A063079 nonn,easy %O A063079 1,2 %A A063079 _N. J. A. Sloane_, Aug 07 2001 %E A063079 More terms from _Vladeta Jovovic_, Aug 07 2001