This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A063232 #44 Jan 12 2024 01:24:34 %S A063232 5,16,24,36,44,56,64,76,84,96,104,116,124,136,144,156,164,176,184,196, %T A063232 204,216,224,236,244,256,264,276,284,296,304,316,324,336,344,356,364, %U A063232 376,384,396,404,416,424,436,444,456,464,476,484,496,504,516,524,536 %N A063232 Dimension of the space of weight 2n cuspidal newforms for Gamma_0( 77 ). %C A063232 Also dimension of the space of weight 2n cuspidal newforms for Gamma_0( 93 ). %H A063232 Reinhard Zumkeller, <a href="/A063232/b063232.txt">Table of n, a(n) for n = 1..1000</a> %H A063232 William A. Stein, <a href="http://wstein.org/Tables/dimskg0new.gp">Dimensions of the spaces S_k^{new}(Gamma_0(N))</a>. %H A063232 William A. Stein, <a href="http://wstein.org/Tables/">The modular forms database</a>. %H A063232 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,-1). %F A063232 Except for the first term, a(n) = 20*(n-1)-a(n-1), (with a(2)=16). - _Vincenzo Librandi_, Dec 07 2010 %F A063232 a(n) = -5+(-1)^n+10*n for n>1. a(n)=a(n-1)+a(n-2)-a(n-3) for n>4; G.f.: x*(x^3+3*x^2+11*x+5) / ((x-1)^2*(x+1)). - _Colin Barker_, Sep 08 2013 %F A063232 Sum_{n>=1} (-1)^(n+1)/a(n) = (sqrt(1+2/sqrt(5))*Pi - 1)/20. - _Amiram Eldar_, Jan 12 2024 %t A063232 Table[5 + 10 (n - 1) + (-1)^n + Mod[Binomial[2 (n - 1), n - 1], 2], {n, 50}] (* _Wesley Ivan Hurt_, May 25 2014 *) %t A063232 LinearRecurrence[{1,1,-1},{5,16,24,36},60] (* _Harvey P. Dale_, Aug 21 2017 *) %o A063232 (PARI) A063232(n)=10*n-3-bittest(n,0)*2-(n>1) \\ _M. F. Hasler_, Mar 05 2012 %o A063232 (Haskell) %o A063232 a063232 n = a063232_list !! (n-1) %o A063232 a063232_list = 5 : 16 : 24 : 36 : zipWith3 (((-) .) . (+)) %o A063232 (drop 3 a063232_list) (drop 2 a063232_list) (tail a063232_list) %o A063232 -- _Reinhard Zumkeller_, May 03 2015 %K A063232 nonn,easy %O A063232 1,1 %A A063232 _N. J. A. Sloane_, Jul 10 2001