This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A063266 #5 Mar 31 2012 13:20:06 %S A063266 1,1,1,1,1,1,1,6,-15,20,-15,6,-1,5,-9,5,5,-9,5,-1,4,-3,-10,25,-24,11, %T A063266 -2,3,3,-25,45,-39,17,-3,2,9,-40,65,-54,23,-4,1,15,-55,85,-69,29,-5, %U A063266 21,-70,105,-84,35,-6,15,-19,-95,396,-751,917,-792,495,-220 %N A063266 Coefficient array for certain numerator polynomials N7(n,x), n >= 0 (rising powers of x). %C A063266 The g.f. of column k of array A063265(n,k) is (x^(ceiling(k/6)))*N7(k,x)/(1-x)^(k+1). %C A063266 The degree sequence for the polynomials N7(n,x) is [0,0,0,0,0,0,0,5,6,6,6,6,6,5,11,...]. %C A063266 All row sums N7(n,1)= 1. %F A063266 a(n, m)=[x^m]N7(n, x), n, m >= 0, with N7(n, x) = sum(((1-x)^(j-1))*(x^(b(c(n), j)))*N7(n-j, x), j=1..6), N7(n, x)= 1 for n=0..6 and b(c(n), j) := 1 if 1<= j <= c(n) else 0, with c(n) := 5 if mod(n, 6)=0 and c(n) := mod(n, 6)-1 else; hence b(0, j)=0, j=1..6. %e A063266 {1}; {1}; {1}; {1}; {1}; {1}; {1}; {6, -15, 20, -15, 6, -1}; {5, -9, 5, 5, -9, 5, -1}; ... %e A063266 c=3: b(3,1)=b(3,2)=b(3,3)=1, b(3,j)=0 for j=4,5,6. %e A063266 N7(8,x)= 5-9*x+5*x^2+5*x^3-9*x^4+5*x^5-x^6. %K A063266 sign,easy,tabf %O A063266 0,8 %A A063266 _Wolfdieter Lang_, Jul 24 2001