This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A063378 #7 Oct 30 2022 18:19:59 %S A063378 4,7,3,11,5,2,89,1122659,19099919,85864769,26089808579,665043081119, %T A063378 554688278429,4090932431513069,95405042230542329 %N A063378 Smallest number whose Sophie Germain degree (see A063377) is n. %C A063378 Also known as Cunningham chains of length n of the first kind. %C A063378 For each positive integer n, is there some integer with Sophie Germain degree of n? %H A063378 Warut Roonguthai, <a href="http://ksc9.th.com/warut/cunningham.html">Yves Gallot's Proth.exe and Cunningham Chains</a> %e A063378 Using f(x)=2x+1, 11 -> 23 -> 47 -> 95, which is composite; thus a(3)=11. %t A063378 NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; f[n_] := Block[{k = 2}, While[ Length[ NestWhileList[2# + 1 &, k, PrimeQ]] != n + 1, k = NextPrim[k]]; k]; Table[f[n], {n, 1, 8}] %Y A063378 Cf. A005384, A063377. %K A063378 hard,more,nonn %O A063378 0,1 %A A063378 _Reiner Martin_, Jul 14 2001 %E A063378 More terms from _Jud McCranie_, Jul 20 2001 %E A063378 Edited and extended by _Robert G. Wilson v_, Nov 21 2002