cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A063378 Smallest number whose Sophie Germain degree (see A063377) is n.

This page as a plain text file.
%I A063378 #7 Oct 30 2022 18:19:59
%S A063378 4,7,3,11,5,2,89,1122659,19099919,85864769,26089808579,665043081119,
%T A063378 554688278429,4090932431513069,95405042230542329
%N A063378 Smallest number whose Sophie Germain degree (see A063377) is n.
%C A063378 Also known as Cunningham chains of length n of the first kind.
%C A063378 For each positive integer n, is there some integer with Sophie Germain degree of n?
%H A063378 Warut Roonguthai, <a href="http://ksc9.th.com/warut/cunningham.html">Yves Gallot's Proth.exe and Cunningham Chains</a>
%e A063378 Using f(x)=2x+1, 11 -> 23 -> 47 -> 95, which is composite; thus a(3)=11.
%t A063378 NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; f[n_] := Block[{k = 2}, While[ Length[ NestWhileList[2# + 1 &, k, PrimeQ]] != n + 1, k = NextPrim[k]]; k]; Table[f[n], {n, 1, 8}]
%Y A063378 Cf. A005384, A063377.
%K A063378 hard,more,nonn
%O A063378 0,1
%A A063378 _Reiner Martin_, Jul 14 2001
%E A063378 More terms from _Jud McCranie_, Jul 20 2001
%E A063378 Edited and extended by _Robert G. Wilson v_, Nov 21 2002