A063381 Number of orbits of the group of units of Z/(n) acting naturally on the 4-subsets of Z/(n).
1, 2, 9, 7, 24, 24, 56, 34, 151, 62, 173, 187, 264, 151, 530, 218, 679, 528, 737, 405, 1558, 638, 1256, 1002, 1871, 852, 3567, 1053, 2472, 2109, 2908, 2226, 5433, 1840, 4113, 3523, 6356, 2537, 9598, 2944, 7311, 6424, 7429, 3883, 13592, 5058, 11576, 7982, 12123, 5638, 17971, 8613, 16766, 11201
Offset: 4
Keywords
Examples
a(5) = 2 since when U(5) = {1,2,3,4} acts naturally on the five 4-subsets {0,1,2,3}, {0,1,2,4}, {0,1,3,4}, {0,2,3,4}, {1,2,3,4} of Z/(5) the orbits are {{0,1,2,3},{0,1,2,4}, {0,1,3,4}, {0,2,3,4}} and {{1,2,3,4}}.
Programs
-
Maple
g:= proc(n) local U, S, C, R,u,s,Cr,us,v; U:= select(t -> igcd(n,t)=1, [$1..n-1]); S:= combinat:-choose({$0..n-1},4); C:= S; for s in S do R[s]:= s od; for u in U do Cr:= NULL; for s in C do us:= map(t -> u*t mod n, s); v:= R[us]; while R[v] <> v do v:= R[v] od; if v <> s then R[s]:= v; Cr:= Cr, s fi od; C:= C minus {Cr}; od; nops(C) end proc; map(g, [$4..60]); # Robert Israel, Nov 28 2022
Extensions
Offset corrected, and more terms by Robert Israel, Nov 28 2022