cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A063394 Border sum triangle, read by rows: Let T(n,0)=T(n,n)=1. In general T(n,m) is the sum of the elements (apart from T(n,m) itself) in the border of the rectangle with vertices T(0,0), T(n-m,0), T(n,m) and T(m,m).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 7, 7, 1, 1, 15, 19, 15, 1, 1, 31, 47, 47, 31, 1, 1, 63, 111, 131, 111, 63, 1, 1, 127, 255, 343, 343, 255, 127, 1, 1, 255, 575, 863, 979, 863, 575, 255, 1, 1, 511, 1279, 2111, 2655, 2655, 2111, 1279, 511, 1, 1, 1023, 2815, 5055, 6943, 7683, 6943, 5055, 2815, 1023, 1
Offset: 0

Views

Author

Floor van Lamoen, Jul 16 2001

Keywords

Examples

			The triangle begins:
..........1
........1...1
......1...3...1
....1...7...7...1
..1..15..19...15..1
E.g. 19 = 7 + 1 + 1 + 1 + 1 + 1 + 7.
		

Crossrefs

T(1, n) gives A000225(n+1), T(2, n) for n>0 gives A006589.
Other diagonals: A063396, A063397, A063398, A063395.

Programs

  • Maple
    T:=proc(n,m) option remember; local i,j,k,t1,t2,t3; if m < 0 or m > n then RETURN(0); fi; if m = 0 or m = n then RETURN(1); fi; add( T(n-i,m-i),i=1..m) + add( T(n-i,m),i=1..n-m) + add( T(n-m-i,0),i=1..n-m) + add( T(i,i),i=1..m-1); end;
    U:=(1-2*z-2*w+5*z*w-2*z^2*w^2)/(1-z)/(1-w)/(1-2*z-2*w+3*z*w);

Formula

If m < 0 or m > n then T(n, m) = 0; if m = 0 or m = n then T(n, m) = 1; otherwise T(n, m) = Sum( T(n-i, m-i), i=1..m) + Sum( T(n-i, m), i=1..n-m) + Sum( T(n-m-i, 0), i=1..n-m) + Sum( T(i, i), i=1..m-1).
The U-coordinates are nicer. Label the elements U(0, 0), U(1, 0), U(0, 1), U(2, 0), U(1, 1), U(0, 2), ...
Then U(n, 0) = U(0, m) = 1; for n>=1, m>=1, U(n, m) = Sum_{i=0..n-1} U(i, 0) + Sum_{j=0..m-1} U(0, j) - U(0, 0) + Sum_{j=0..m-1} U(n, j) + Sum_{i=0..n-1} U(i, m). Hence U(z, w) = Sum U(n, m) z^n w^m = (1-2*z-2*w+5*z*w-2*z^2*w^2)/((1-z)*(1-w)*(1-2*z-2*w+3*z*w)). - N. J. A. Sloane, Jun 16 2005

Extensions

Entry revised by N. J. A. Sloane, Jun 15 2005
a(51)=2111 corrected by Georg Fischer, Jul 29 2020
Showing 1-1 of 1 results.