cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A063437 Cardinality of largest critical set in any Latin square of order n.

This page as a plain text file.
%I A063437 #21 Aug 18 2024 16:05:22
%S A063437 0,1,3,7,11,18
%N A063437 Cardinality of largest critical set in any Latin square of order n.
%C A063437 A critical set in an n X n array is a set C of given entries such that there exists a unique extension of C to an n X n Latin square and no proper subset of C has this property.
%C A063437 The next terms satisfy a(7) >= 25, a(8) >= 37, a(9) >= 44, a(10) >= 57. In the reference it is proved that, for all n, a(n) <= n^2 - 3n + 3.
%C A063437 a(9) >= 45. - _Richard Bean_, May 01 2002
%C A063437 For n sufficiently large (>= 295), a(n) >= (n^2)*(1-(2 + log 2)/log n) + n*(1 + log(8*Pi)/log n) - (log 2)/(log n). Bean and Mahmoodian also show a(n) <= n^2 - 3n + 3. - _Jonathan Vos Post_, Jan 03 2007
%H A063437 Richard Bean and E. S. Mahmoodian, <a href="https://arxiv.org/abs/math/0107159">A new bound on the size of the largest critical set in a Latin square</a>, arXiv:math/0107159 [math.CO], 2001.
%H A063437 Richard Bean and Ebadollah S. Mahmoodian, <a href="https://doi.org/10.1016/S0012-365X(02)00599-X">A new bound on the size of the largest critical set in a Latin square</a>, Discrete Math., 267 (2003), 13-21.
%H A063437 Mahya Ghandehari, Hamed Hatami and Ebadollah S. Mahmoodian, <a href="https://arxiv.org/abs/math/0701015">On the size of the minimum critical set of a Latin square</a>, arXiv:math/0701015 [math.CO], 2006.
%H A063437 Mahya Ghandehari, Hamed Hatami and Ebadollah S. Mahmoodian, <a href="https://doi.org/10.1016/S0012-365X(02)00599-X">On the size of the minimum critical set of a Latin square</a>, Journal of Discrete Mathematics. 293(1-3) (2005) pp. 121-127.
%H A063437 Hamed Hatami and Ebadollah S. Mahmoodian, <a href="https://arxiv.org/abs/math/0701014">A lower bound for the size of the largest critical sets in Latin squares</a>, arXiv:math/0701014 [math.CO], 2006; Bulletin of the Institute of Combinatorics and its Applications (Canada). 38 (2003) pp. 19-22
%K A063437 nonn,more
%O A063437 1,3
%A A063437 Ahmed Fares (ahmedfares(AT)my-deja.com), Jul 24 2001