This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A063437 #21 Aug 18 2024 16:05:22 %S A063437 0,1,3,7,11,18 %N A063437 Cardinality of largest critical set in any Latin square of order n. %C A063437 A critical set in an n X n array is a set C of given entries such that there exists a unique extension of C to an n X n Latin square and no proper subset of C has this property. %C A063437 The next terms satisfy a(7) >= 25, a(8) >= 37, a(9) >= 44, a(10) >= 57. In the reference it is proved that, for all n, a(n) <= n^2 - 3n + 3. %C A063437 a(9) >= 45. - _Richard Bean_, May 01 2002 %C A063437 For n sufficiently large (>= 295), a(n) >= (n^2)*(1-(2 + log 2)/log n) + n*(1 + log(8*Pi)/log n) - (log 2)/(log n). Bean and Mahmoodian also show a(n) <= n^2 - 3n + 3. - _Jonathan Vos Post_, Jan 03 2007 %H A063437 Richard Bean and E. S. Mahmoodian, <a href="https://arxiv.org/abs/math/0107159">A new bound on the size of the largest critical set in a Latin square</a>, arXiv:math/0107159 [math.CO], 2001. %H A063437 Richard Bean and Ebadollah S. Mahmoodian, <a href="https://doi.org/10.1016/S0012-365X(02)00599-X">A new bound on the size of the largest critical set in a Latin square</a>, Discrete Math., 267 (2003), 13-21. %H A063437 Mahya Ghandehari, Hamed Hatami and Ebadollah S. Mahmoodian, <a href="https://arxiv.org/abs/math/0701015">On the size of the minimum critical set of a Latin square</a>, arXiv:math/0701015 [math.CO], 2006. %H A063437 Mahya Ghandehari, Hamed Hatami and Ebadollah S. Mahmoodian, <a href="https://doi.org/10.1016/S0012-365X(02)00599-X">On the size of the minimum critical set of a Latin square</a>, Journal of Discrete Mathematics. 293(1-3) (2005) pp. 121-127. %H A063437 Hamed Hatami and Ebadollah S. Mahmoodian, <a href="https://arxiv.org/abs/math/0701014">A lower bound for the size of the largest critical sets in Latin squares</a>, arXiv:math/0701014 [math.CO], 2006; Bulletin of the Institute of Combinatorics and its Applications (Canada). 38 (2003) pp. 19-22 %K A063437 nonn,more %O A063437 1,3 %A A063437 Ahmed Fares (ahmedfares(AT)my-deja.com), Jul 24 2001