This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A063454 #22 Jul 02 2025 20:00:45 %S A063454 1,4,9,20,25,36,55,112,189,100,121,180,109,220,225,448,289,756,487, %T A063454 500,495,484,529,1008,725,436,2187,1100,841,900,1081,2048,1089,1156, %U A063454 1375,3780,973,1948,981,2800,1681,1980,1513,2420,4725,2116,2209,4032 %N A063454 Number of solutions to x^3 + y^3 = z^3 mod n. %C A063454 Equivalently, the number of solutions to x^3 + y^3 + z^3 == 0 (mod n). - _Andrew Howroyd_, Jul 18 2018 %H A063454 Chai Wah Wu, <a href="/A063454/b063454.txt">Table of n, a(n) for n = 1..10000</a> (terms n = 1..1000 from Seiichi Manyama) %o A063454 (PARI) a(n)={my(p=Mod(sum(i=0, n-1, x^(i^3%n)), 1-x^n)); polcoeff(lift(p^3), 0)} \\ _Andrew Howroyd_, Jul 18 2018 %o A063454 (Python) %o A063454 def A063454(n): %o A063454 ndict = {} %o A063454 for i in range(n): %o A063454 m = pow(i,3,n) %o A063454 if m in ndict: %o A063454 ndict[m] += 1 %o A063454 else: %o A063454 ndict[m] = 1 %o A063454 count = 0 %o A063454 for i in ndict: %o A063454 ni = ndict[i] %o A063454 for j in ndict: %o A063454 k = (i+j) % n %o A063454 if k in ndict: %o A063454 count += ni*ndict[j]*ndict[k] %o A063454 return count # _Chai Wah Wu_, Jun 06 2017 %Y A063454 Number of solutions to x^k + y^k = z^k mod n: A062775 (k=2), this sequence (k=3), A288099 (k=4), A288100 (k=5), A288101 (k=6), A288102 (k=7), A288103 (k=8), A288104 (k=9), A288105 (k=10). %K A063454 nonn,mult %O A063454 1,2 %A A063454 Ahmed Fares (ahmedfares(AT)my-deja.com), Jul 25 2001 %E A063454 More terms from _Dean Hickerson_, Jul 26 2001