cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A063481 a(n) = 4^n + 8^n.

This page as a plain text file.
%I A063481 #35 Dec 28 2024 11:45:19
%S A063481 2,12,80,576,4352,33792,266240,2113536,16842752,134479872,1074790400,
%T A063481 8594128896,68736253952,549822922752,4398314946560,35185445830656,
%U A063481 281479271677952,2251816993554432,18014467228958720,144115462953762816
%N A063481 a(n) = 4^n + 8^n.
%C A063481 Shift 2^n+1 left 2n bits.
%H A063481 Harry J. Smith, <a href="/A063481/b063481.txt">Table of n, a(n) for n=0,...,200</a>
%H A063481 D. Suprijanto and Rusliansyah, <a href="http://dx.doi.org/10.12988/ams.2014.4140">Observation on Sums of Powers of Integers Divisible by Four</a>, Applied Mathematical Sciences, Vol. 8, 2014, no. 45, 2219 - 2226.
%H A063481 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (12,-32).
%F A063481 G.f.: 1/(1-4*x)+1/(1-8*x). E.g.f.: e^(4*x)+e^(8*x). - _Mohammad K. Azarian_, Jan 11 2009
%F A063481 a(n)=12*a(n-1)-32*a(n-2) with a(0)=2, a(1)=12. - _Vincenzo Librandi_, Jul 21 2010
%F A063481 G.f.: G(0), where G(k)= 1 + 2^k/(1 - 4*x/(4*x + 2^k/G(k+1) )); (continued fraction). - _Sergei N. Gladkovskii_, Jul 22 2013
%e A063481 n=3: 23+1 shifted 2*3 bits to the left is 576 because 23+1 in binary is [1, 0, 0, 1] and 576 is [1, 0, 0, 1, 0, 0, 0, 0, 0, 0].
%t A063481 Table[4^n + 8^n, {n, 0, 25}]
%o A063481 (PARI) a(n) = shift(2^n+1,2*n)
%Y A063481 Cf. A000051, A034472, A052539, A034474, A062394, A034491, A062395, A062396, A007689, A063376, A074600 - A074624.
%K A063481 easy,nonn
%O A063481 0,1
%A A063481 _Jason Earls_, Jul 28 2001
%E A063481 Edited by _Robert G. Wilson v_, Aug 25 2002