cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A063512 Least number starting a chain of exactly 2n-1 consecutive integers that do not have totient inverses.

Original entry on oeis.org

3, 13, 73, 401, 241, 865, 8405, 4033, 10567, 14261, 35171, 64521, 112691, 134641, 256831, 159121, 1214533, 597081, 2277139, 1039681, 5972401, 2307317, 12033793, 9403681, 5313463, 23777761, 84502091, 19773769, 159227791, 9377213, 146793539, 114748705, 245856241
Offset: 1

Views

Author

Labos Elemer, Aug 22 2001

Keywords

Comments

(3/8)*n*log(log(n)) < phi(n) < n for n > 30.

Examples

			n=6: a(6)=865 because it is the first number initiating a chain of exactly 2*6-1=11 consecutive integers, {865,...,875}, such that each has no totient inverse.
		

Crossrefs

Programs

  • Mathematica
    a = Table[0, {5*10^7}]; Do[b = EulerPhi[n]/2; If[b < 5*10^7 + 1, a[[b]]++ ], {n, 3, 5*10^8}]; (* used to find a(7) *) Do[ If[ a[[n]] == a[[n + 1]] == a[[n + 2]] == a[[n + 3]] == a[[n + 4]] == a[[n + 5]] == a[[n + 6]] == 0, Print[2n - 1]], {n, 1, 5*10^7 -6}]

Formula

a(n) = Min{x : invphi(x+j) is empty exactly for j=0..2n-2}.

Extensions

Edited and extended by Robert G. Wilson v, May 28 2002 and Jul 11 2002
David Wasserman pointed out that a(21) was incorrect and supplied a better description on Jul 10 2002
a(29) and a(31)-a(33) from Donovan Johnson, Oct 20 2011