cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A063528 Smallest number such that it and its successor are both divisible by an n-th power larger than 1.

This page as a plain text file.
%I A063528 #12 May 25 2025 20:48:12
%S A063528 2,8,80,80,1215,16767,76544,636416,3995648,24151040,36315135,
%T A063528 689278976,1487503359,1487503359,155240824832,785129144319,
%U A063528 4857090670592,45922887663615,157197025673216,1375916505694208,2280241934368767,2280241934368767,2280241934368767
%N A063528 Smallest number such that it and its successor are both divisible by an n-th power larger than 1.
%C A063528 Lesser of the smallest pair of consecutive numbers divisible by an n-th power.
%C A063528 To get a(j), max exponent[=A051953(n)] of a(j) and 1+a(j) should exceed (j-1).
%C A063528 One can find a solution for primes p and q by solving p^n*i + 1 = q^n*j; then p^n*i is a solution. This solution will be less than (p*q)^n but greater than max(p,q)^n. Thus finding the solutions for 2, 3 (p=2,q=3 and p=3,q=2), one need at most also look at 2, 5 and 3, 5. It appears that the solution with 2, 3 is always optimal. - _Franklin T. Adams-Watters_, May 27 2011
%D A063528 J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 242, p. 67, Ellipses, Paris 2008.
%H A063528 Franklin T. Adams-Watters, <a href="/A063528/b063528.txt">Table of n, a(n) for n = 1..100</a>
%e A063528 a(4) = 80 since 2^4 = 16 divides 80 and 3^4 = 81 divides 81.
%t A063528 k = 4; Do[k = k - 2; a = b = 0; While[ b = Max[ Transpose[ FactorInteger[k]] [[2]]]; a <= n || b <= n, k++; a = b]; Print[k - 1], {n, 0, 19} ]
%o A063528 (PARI) b(n,p=2,q=3)=local(i);i=Mod(p,q^n)^-n; min(p^n*lift(i)-1,p^n*lift(-i))
%o A063528 a(n)=local(r);r=b(n);if(r>5^n,r=min(r,min(b(n,2,5),b(n,3,5))));r /* _Franklin T. Adams-Watters_, May 27 2011 */
%Y A063528 We need A051903(a[n]) > n-1 and A051903(a[n]+1) > n-1.
%Y A063528 Cf. A068780, A068781, A068140, A068782, A068783, A068784.
%Y A063528 Cf. A045330, A059737.
%K A063528 nonn
%O A063528 1,1
%A A063528 _Erich Friedman_, Aug 01 2001
%E A063528 More terms from _Jud McCranie_, Aug 06 2001