A063538 Numbers n that are not sqrt(n-1)-smooth: largest prime factor of n (=A006530(n)) >= sqrt(n).
2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 19, 20, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 51, 52, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 68, 69, 71, 73, 74, 76, 77, 78, 79, 82, 83, 85, 86, 87, 88, 89, 91
Offset: 1
References
- D. H. Greene and D. E. Knuth, Mathematics for the Analysis of Algorithms; see pp. 95-98.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Beeler, M., Gosper, R. W. and Schroeppel, R., HAKMEM, ITEM 29
Crossrefs
The strictly superior version is A064052 (complement: A048098), with associated unique prime divisor A341643.
Also nonzeros of A341591 (number of superior prime divisors).
The unique superior prime divisors of the terms are A341676.
A033677 selects the smallest superior divisor.
A038548 counts superior (also inferior) divisors.
A161908 lists superior divisors.
Programs
-
Maple
N:= 1000: # to get all terms <= N Primes:= select(isprime, [2,seq(2*i+1, i=1..floor((N-1)/2))]): S:= {seq(seq(m*p, m = 1 .. min(p, N/p)),p=Primes)}: sort(convert(S,list)); # Robert Israel, Sep 01 2015
-
Mathematica
Select[Range[2, 91], FactorInteger[#][[-1, 1]] >= Sqrt[#] &] (* Ivan Neretin, Aug 30 2015 *)
-
Python
from math import isqrt from sympy import primepi def A063538(n): def f(x): return int(n+x-primepi(x//(y:=isqrt(x)))-sum(primepi(x//i)-primepi(i) for i in range(1,y))) m, k = n, f(n) while m != k: m, k = k, f(k) return m # Chai Wah Wu, Oct 05 2024
Comments