A063585 Least k >= 0 such that 5^k has exactly n 0's in its decimal representation.
0, 8, 13, 34, 40, 48, 52, 45, 64, 99, 143, 132, 100, 122, 117, 151, 205, 207, 201, 242, 230, 244, 231, 221, 295, 264, 266, 333, 248, 344, 346, 274, 391, 345, 356, 393, 433, 365, 472, 499, 488, 455, 516, 485, 511, 458, 520, 487, 459, 456, 457
Offset: 0
Links
- Robert Israel, Table of n, a(n) for n = 0..3373
- M. F. Hasler, Zeroless powers. OEIS Wiki, March 2014
Crossrefs
Programs
-
Maple
N:= 100: # to get a(0)..a(N) A:= Array(0..N, -1): p:= 1: A[0]:= 0: count:= 1: for k from 1 while count <= N do p:= 5*p; m:= numboccur(0, convert(p, base, 10)); if m <= N and A[m] < 0 then A[m]:= k; count:= count+1; od: convert(A,list); # Robert Israel, Dec 20 2018
-
Mathematica
a = {}; Do[k = 0; While[ Count[ IntegerDigits[5^k], 0] != n, k++ ]; a = Append[a, k], {n, 0, 50} ]; a
-
PARI
A063585(n)=for(k=n,oo,#select(d->!d,digits(5^k))==n&&return(k)) \\ M. F. Hasler, Jun 14 2018