This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A063637 #44 Nov 02 2023 12:32:41 %S A063637 2,7,13,19,23,31,37,47,53,67,83,89,109,113,127,131,139,157,167,181, %T A063637 199,211,233,251,257,263,293,307,317,337,353,359,379,389,401,409,443, %U A063637 449,467,479,487,491,499,503,509,541,557,563,571,577,587,631,647,653,677 %N A063637 Primes p such that p+2 is a semiprime. %C A063637 Primes of the form p*q - 2, where p and q are primes. %C A063637 Union of A049002 and A115093. - _T. D. Noe_, Mar 01 2006 %D A063637 J.-R. Chen, On the representation of a large even integer as the sum of a prime and a product of at most two primes, Sci. Sinica 16 (1973), 157-176. %H A063637 K. D. Bajpai, <a href="/A063637/b063637.txt">Table of n, a(n) for n = 1..14190</a> (first 1000 terms from T. D. Noe) %H A063637 P. Pollack, <a href="http://www.math.dartmouth.edu/~ppollack/notes.pdf">Analytic and Combinatorial Number Theory</a> Course Notes, p. 146. [?Broken link] %H A063637 P. Pollack, <a href="http://alpha01.dm.unito.it/personalpages/cerruti/ac/notes.pdf">Analytic and Combinatorial Number Theory</a> Course Notes, p. 146. %H A063637 T. Tao, <a href="http://arXiv.org/abs/math.NT/0505402">Obstructions to uniformity and arithmetic patterns in the primes</a>, arXiv:math/0505402 [math.NT], 2005. %F A063637 a(n) = A062721(n) - 2. %F A063637 A010051(a(n)) * A064911(a(n) + 2) = 1. - _Reinhard Zumkeller_, Nov 15 2011 %e A063637 From _K. D. Bajpai_, Sep 06 2014: (Start) %e A063637 a(3) = 13, which is prime, and 13 + 2 = 15 = 3 * 5, which is a semiprime. %e A063637 a(4) = 19, which is prime, and 19 + 2 = 21 = 3 * 7, which is a semiprime. %e A063637 (End) %p A063637 select(t -> isprime(t) and numtheory:-bigomega(t+2)=2, [2, seq(2*i+1,i=1..500)]); # _Robert Israel_, Sep 07 2014 %t A063637 f[n_] := Plus @@ Flatten[ Table[ # [[2]], {1}] & /@ FactorInteger[ n]]; Select[ Prime[ Range[ 123]], f[ # + 2] == 2 &] (* _Robert G. Wilson v_, Apr 30 2005 *) %t A063637 Select[Prime[Range[500]],PrimeOmega[#+2]==2&] (* _K. D. Bajpai_, Sep 06 2014 *) %o A063637 (PARI) { n=0; for (m=1, 10^9, p=prime(m); if (bigomega(p + 2) == 2, write("b063637.txt", n++, " ", p); if (n==1000, break)) ) } \\ _Harry J. Smith_, Aug 26 2009 %o A063637 (Haskell) %o A063637 a063637 n = a063637_list !!(n-1) %o A063637 a063637_list = filter ((== 1) . a064911 . (+ 2)) a000040_list %o A063637 -- _Reinhard Zumkeller_, Nov 15 2011 %Y A063637 Cf. A005383, A001358, A063638. %Y A063637 Cf. A109611 (Chen primes). %K A063637 nonn %O A063637 1,1 %A A063637 _Reinhard Zumkeller_, Jul 21 2001