cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A063664 Numbers whose reciprocal is the sum of two reciprocals of squares.

This page as a plain text file.
%I A063664 #10 Feb 09 2021 02:05:24
%S A063664 2,8,18,20,32,50,72,80,90,98,128,144,162,180,200,242,272,288,320,338,
%T A063664 360,392,450,468,500,512,576,578,648,650,720,722,800,810,882,968,980,
%U A063664 1058,1088,1152,1250,1280,1296,1332,1352,1440,1458,1568,1620,1682,1800
%N A063664 Numbers whose reciprocal is the sum of two reciprocals of squares.
%C A063664 These are numbers which can be written either as b^2*c^2*(b^2+c^2)*d^2 or if (b^2+c^2) is a square then as b^2*c^2*d^2, since 1/(b*(b^2+c^2)*d)^2+1/(c*(b^2+c^2)*d)^2 =1/(b^2*c^2*(b^2+c^2)*d^2) and 1/(b*sqrt(b^2+c^2)*d)^2+1/(c*sqrt(b^2+c^2)*d)^2 = 1/(b^2*c^2*d^2).
%e A063664 98 is in the sequence since 1/98=1/10^2+1/70^2 (also 1/98=1/14^2+1/14^2).
%o A063664 (Python)
%o A063664 from fractions import Fraction
%o A063664 def aupto(lim):
%o A063664   sqr_recips = [Fraction(1, i*i) for i in range(1, lim+2)]
%o A063664   ssr = set(f + g for i, f in enumerate(sqr_recips) for g in sqr_recips[i:])
%o A063664   representable = [f.denominator for f in ssr if f.numerator == 1]
%o A063664   return sorted(r for r in representable if r <= lim)
%o A063664 print(aupto(1800)) # _Michael S. Branicky_, Feb 08 2021
%Y A063664 Either products of terms in A063663 and A000290, or squares of A008594.
%Y A063664 Cf. A001481, A000404, A063665, A063669.
%K A063664 nonn
%O A063664 1,1
%A A063664 _Henry Bottomley_, Jul 28 2001
%E A063664 Offset changed to 1 by _Derek Orr_, Jun 23 2015