cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A063669 Hypotenuses of reciprocal Pythagorean triangles: number of solutions to 1/(12n)^2 = 1/b^2 + 1/c^2 [with b >= c > 0]; also number of values of A020885 (with repetitions) which divide n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 2, 1, 4, 1, 1, 1, 1, 4, 1, 1, 1, 1, 3, 1, 2, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 2, 1, 1, 1, 4, 1, 1, 1, 1, 2, 1, 1, 1, 1, 6, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 3, 2, 1, 1, 1, 1, 4, 2, 1, 1, 1, 2, 1, 1, 2, 1, 3, 1, 1, 1, 1, 5
Offset: 1

Views

Author

Henry Bottomley, Jul 28 2001

Keywords

Comments

Primitive reciprocal Pythagorean triangles 1/a^2 = 1/b^2 + 1/c^2 have a=fg, b=ef, c=eg where e^2 = f^2 + g^2; i.e., e,f,g represent the sides of primitive Pythagorean triangles. But the product of the two legs of primitive Pythagorean triangles are multiples of 12 and so the reciprocal of hypotenuses of reciprocal Pythagorean triangles are always multiples of 12 (A008594).

Examples

			a(1)=1 since 1/(12*1)^2 = 1/12^2 = 1/15^2 + 1/20^2;
a(70)=6 since 1/(12*70)^2 = 1/840^2 = 1/875^2 + 1/3000^2 = 1/888^2 + 1/2590^2 = 1/910^2 + 1/2184^2 = 1/952^2 + 1/1785^2 = 1/1050^2 + 1/1400^2 = 1/1160^2 + 1/1218^2.
Looking at A020885, 1 is divisible by 1, while 70 is divisible by 1, 5, 10, 14, 35 and again 35.
		

Crossrefs