A063691 Number of solutions to x^2 + y^2 + z^2 = n in positive integers.
0, 0, 0, 1, 0, 0, 3, 0, 0, 3, 0, 3, 1, 0, 6, 0, 0, 3, 3, 3, 0, 6, 3, 0, 3, 0, 6, 4, 0, 6, 6, 0, 0, 6, 3, 6, 3, 0, 9, 0, 0, 9, 6, 3, 3, 6, 6, 0, 1, 6, 6, 6, 0, 6, 12, 0, 6, 6, 0, 9, 0, 6, 12, 0, 0, 6, 12, 3, 3, 12, 6, 0, 3, 3, 12, 7, 3, 12, 6, 0, 0, 12, 3, 9, 6, 0, 15, 0, 3, 15
Offset: 0
Examples
a(5)=0; a(6)=3 because 1^2+1^2+2^2 = 1^2+2^2+1^2 = 2^2+1^2+1^2 = 6; a(27)=4 because 1^2+1^2+5^2 = 1^2+5^2+1^2 = 3^2+3^2+3^2 = 5^2+1^2+1^2 = 27.
Links
- T. D. Noe, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Mathematica
r[n_] := Reduce[ x>0 && y>0 && z>0 && x^2 + y^2 + z^2 == n, {x, y, z}, Integers]; a[n_] := Which[rn = r[n]; rn === False, 0, Head[rn] === Or, Length[rn], True, 1]; Table[a[n], {n, 0, 89}](* Jean-François Alcover, May 10 2012 *) (EllipticTheta[3, 0, x] - 1)^3/8 + O[x]^100 // CoefficientList[#, x]& (* Jean-François Alcover, Jul 30 2017 *)
Formula
G.f.: (Sum_{m>=1} x^(m^2))^3.