cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A063705 Cyclotomic polynomials Phi_n at x=phi, rounded to nearest integer (where phi = tau = (sqrt(5)+1)/2).

This page as a plain text file.
%I A063705 #21 Feb 27 2024 06:49:41
%S A063705 2,1,3,5,4,16,2,45,8,23,5,320,5,841,11,26,48,5776,15,15125,34,167,76,
%T A063705 103680,41,16626,199,5855,233,1860496,56,4870845,2208,7602,1364,45081,
%U A063705 305,87403801,3571,51941,1926,599074576,407,1568397605,10946,80321
%N A063705 Cyclotomic polynomials Phi_n at x=phi, rounded to nearest integer (where phi = tau = (sqrt(5)+1)/2).
%H A063705 Robert Israel, <a href="/A063705/b063705.txt">Table of n, a(n) for n = 0..2500</a>
%H A063705 <a href="/index/Cy#CyclotomicPolynomialsValuesAtPhi">Index entries for cyclotomic polynomials, values at phi</a>
%p A063705 with(numtheory); Phi_at_x := (n,y) -> subs(x=y,cyclotomic(n,x)); [seq(round(evalf(simplify(Phi_at_x(j,(sqrt(5)+1)/2)))),j=0..120)];
%t A063705 Join[{2}, Round[Simplify[Cyclotomic[Range[50], GoldenRatio]]]] (* _Paolo Xausa_, Feb 27 2024 *)
%Y A063705 Cf. A019320, A063703, A063707, A063706.
%K A063705 nonn
%O A063705 0,1
%A A063705 _Antti Karttunen_, Aug 03 2001
%E A063705 a(43) corrected by _Sean A. Irvine_, May 08 2023