cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A063708 Cyclotomic polynomials Phi_n at x=phi divided by sqrt(5) and ceiled up (where phi = tau = (sqrt(5)+1)/2).

This page as a plain text file.
%I A063708 #10 Feb 27 2024 07:28:30
%S A063708 1,1,2,3,2,8,1,21,4,11,3,144,3,377,6,12,22,2584,7,6765,16,75,35,46368,
%T A063708 19,7436,90,2619,105,832040,26,2178309,988,3400,611,20161,137,
%U A063708 39088169,1598,23229,862,267914296,183,701408733,4896,35921,10947,4807526976
%N A063708 Cyclotomic polynomials Phi_n at x=phi divided by sqrt(5) and ceiled up (where phi = tau = (sqrt(5)+1)/2).
%H A063708 Paolo Xausa, <a href="/A063708/b063708.txt">Table of n, a(n) for n = 0..1000</a>
%p A063708 with(numtheory); Phi_at_x := (n,y) -> subs(x=y,cyclotomic(n,x)); [seq(ceil(evalf(simplify(Phi_at_x(j,(sqrt(5)+1)/2))/(sqrt(5)))),j=0..120)];
%t A063708 Ceiling[Simplify[Cyclotomic[Range[0, 50], GoldenRatio]]/Sqrt[5]] (* _Paolo Xausa_, Feb 27 2024 *)
%Y A063708 Cf. A063707, A051258, A063704, A063706.
%K A063708 nonn
%O A063708 0,3
%A A063708 _Antti Karttunen_, Aug 03 2001