This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A063737 #31 May 10 2025 23:14:11 %S A063737 2,3,4,5,7,27,378,576,588,648,729,2688,17496,19683,49896,69888, %T A063737 3796875,3857868,4898880,5878656,7077888,8957952,2499898464, %U A063737 34998578496,49997969280,2928898896840,7625597484987,184958866998359685 %N A063737 Numbers n such that sum of digits of n is equal to the sum of the prime factors of n, counted with multiplicity. %C A063737 a(29) > 10^30. - _Giovanni Resta_, Apr 23 2017 %C A063737 a(29) > 10^50 if it exists. - _Bert Dobbelaere_, Jun 16 2024 %e A063737 27=3*3*3, 2+7=9, 3+3+3=9. 49896 = 2*2*2*3*3*3*3*7*11, 4+9+8+9+6 = 36, 2+2+2+3+3+3+3+7+11 = 36. %t A063737 g@n_ := Cases[Union@(Times @@ # & /@Select[Flatten[Table[IntegerPartitions[k, All, Prime@Range@PrimePi@(9*n)], {k,1,9*n}],1],Plus@@#==DigitSum@(Times @@ #) &]), %t A063737 _?(#<10^n&)]; %t A063737 g@18 (*Requires Mathematica version 14 or later*) (* _Hans Rudolf Widmer_, Jan 20 2024 *) %o A063737 (ARIBAS) var stk: stack; end; for n := 1 to 2000000 do s := itoa(n); for j := 0 to length(s) - 1 do stack_push(stk,atoi(s[j..j])); end; if sum(stack2array(stk)) = sum(factorlist(n)) then write(n," "); end; end; %o A063737 (PARI) isok(m) = my(f=factor(m)); sumdigits(m) == f[, 1]~*f[, 2]; \\ _Michel Marcus_, Dec 18 2020 %o A063737 (Python) MAXDIGITS=20 %o A063737 maxsum,maxval = 9*MAXDIGITS,10**MAXDIGITS-1 %o A063737 from sympy import primerange %o A063737 primes=list(primerange(0,maxsum)) %o A063737 nprimes, results = len(primes), [] %o A063737 def lensumdigits(x): %o A063737 s,t = str(x),0 %o A063737 for c in s: t+= ord(c)-48 %o A063737 return len(s),t %o A063737 def solve(startidx, sump, val): %o A063737 for idx in range(startidx,nprimes): %o A063737 p=primes[idx] %o A063737 s2,v2 = sump+p,val*p %o A063737 ld,sd = lensumdigits(v2) %o A063737 if sd==s2: results.append(v2) %o A063737 if (s2 > maxsum) or (v2 > maxval) or ((p>10) and (s2 > 9*ld)): %o A063737 return %o A063737 solve(idx, s2, v2) %o A063737 solve(0, 0, 1) ; print(sorted(results)) # _Bert Dobbelaere_, Jun 16 2024 %Y A063737 Cf. A001414, A007953. %K A063737 nonn,base,more %O A063737 1,1 %A A063737 _Felice Russo_, Aug 13 2001 %E A063737 More terms from _Klaus Brockhaus_, Aug 17 2001 %E A063737 More terms from _David Wasserman_, Jul 11 2002