This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A063741 #24 Jan 22 2018 16:08:01 %S A063741 10,0,4,8,23,35,47,59,63,83,89,113,143,119,197,167,279,233,281,209, %T A063741 269,323,299,359,497,329,455,605,389,461,479,419,539,599,509,755,791, %U A063741 713,875,797,719,629,659,1025,1163,929,779,1193,1121,899,1133,1091,839 %N A063741 Smallest number whose inverse cototient set has n elements. %C A063741 Note that 1 is the only number that has infinitely many cototient-inverses, namely, all the primes. %H A063741 Donovan Johnson, <a href="/A063741/b063741.txt">Table of n, a(n) for n = 0..1000</a> %F A063741 a(n) = min {x: |InvCot(x)| = n}. %F A063741 a(n) = min { k | A063740(k) = n }. - _M. F. Hasler_, Jan 11 2018 %e A063741 For n = 1, 2, 3, 4, 5, ..., the corresponding inverse sets are as follows: {}, {4}, {6, 8}, {12, 14, 16}, {95, 119, 143, 529}, {75, 155, 203, 299, 323}, ..., {455, 815, 1727, 2567, 2831, 4031, 4247, 4847, 5207, 6431, 6527, 6767, 6887, 7031, 27889}, including 0, 1, 2, 3, 4, 5, ..., 15 numbers. %t A063741 With[{s = Array[Count[Range[#^2], k_ /; k - EulerPhi@ k == #] &, 300, 2]}, ReplacePart[TakeWhile[First@ FirstPosition[s, #] + 1 & /@ Range[0, Max@ s], IntegerQ], 2 -> 0]] (* _Michael De Vlieger_, Jan 11 2018 *) %Y A063741 Cf. A000010, A051953 (cototient: n - phi(n)), A063507. %Y A063741 Cf. A063740 (number of k such that cototient(k) = n). %K A063741 nonn %O A063741 0,1 %A A063741 _Labos Elemer_, Aug 13 2001 %E A063741 More terms from _David Wasserman_, Jul 11 2002