cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A063759 Spherical growth series for modular group.

This page as a plain text file.
%I A063759 #38 Feb 09 2017 03:02:50
%S A063759 1,3,4,6,8,12,16,24,32,48,64,96,128,192,256,384,512,768,1024,1536,
%T A063759 2048,3072,4096,6144,8192,12288,16384,24576,32768,49152,65536,98304,
%U A063759 131072,196608,262144,393216,524288,786432,1048576,1572864,2097152
%N A063759 Spherical growth series for modular group.
%C A063759 Also number of sequences S of length n with entries in {1,..,q} where q = 3, satisfying the condition that adjacent terms differ in absolute value by exactly 1, see examples. - _W. Edwin Clark_, Oct 17 2008
%D A063759 P. de la Harpe, Topics in Geometric Group Theory, Univ. Chicago Press, 2000, p. 156.
%H A063759 Reinhard Zumkeller, <a href="/A063759/b063759.txt">Table of n, a(n) for n = 0..1000</a>
%H A063759 <a href="/index/Gre#groups_modular">Index entries for sequences related to modular groups</a>
%H A063759 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (0,2)
%F A063759 G.f.: (1+3*x+2*x^2)/(1-2*x^2).
%F A063759 a(n) = 2*a(n-2), n>2. - _Harvey P. Dale_, Oct 22 2011
%F A063759 a(2*n) = A151821(n+1); a(2*n+1) = A007283(n). - _Reinhard Zumkeller_, Dec 16 2013
%e A063759 For n = 2 the a(2) = 4 sequences are (1,2),(2,1),(2,3),(3,2). - _W. Edwin Clark_, Oct 17 2008
%e A063759 From _Joerg Arndt_, Nov 23 2012: (Start)
%e A063759 There are a(6) = 16 such words of length 6:
%e A063759 [ 1]   [ 1 2 1 2 1 2 ]
%e A063759 [ 2]   [ 1 2 1 2 3 2 ]
%e A063759 [ 3]   [ 1 2 3 2 1 2 ]
%e A063759 [ 4]   [ 1 2 3 2 3 2 ]
%e A063759 [ 5]   [ 2 1 2 1 2 1 ]
%e A063759 [ 6]   [ 2 1 2 1 2 3 ]
%e A063759 [ 7]   [ 2 1 2 3 2 1 ]
%e A063759 [ 8]   [ 2 1 2 3 2 3 ]
%e A063759 [ 9]   [ 2 3 2 1 2 1 ]
%e A063759 [10]   [ 2 3 2 1 2 3 ]
%e A063759 [11]   [ 2 3 2 3 2 1 ]
%e A063759 [12]   [ 2 3 2 3 2 3 ]
%e A063759 [13]   [ 3 2 1 2 1 2 ]
%e A063759 [14]   [ 3 2 1 2 3 2 ]
%e A063759 [15]   [ 3 2 3 2 1 2 ]
%e A063759 [16]   [ 3 2 3 2 3 2 ]
%e A063759 (End)
%t A063759 CoefficientList[Series[(1+3*x+2*x^2)/(1-2*x^2),{x,0,40}],x](* _Jean-François Alcover_, Mar 21 2011 *)
%t A063759 Join[{1},Transpose[NestList[{Last[#],2First[#]}&,{3,4},40]][[1]]] (* _Harvey P. Dale_, Oct 22 2011 *)
%o A063759 (Haskell)
%o A063759 import Data.List (transpose)
%o A063759 a063759 n = a063759_list !! n
%o A063759 a063759_list = concat $ transpose [a151821_list, a007283_list]
%o A063759 -- _Reinhard Zumkeller_, Dec 16 2013
%o A063759 (PARI) a(n)=([0,1; 2,0]^n*[1;3])[1,1] \\ _Charles R Greathouse IV_, Feb 09 2017
%Y A063759 Cf. A054886, A029744.
%Y A063759 The sequence (ternary strings) seems to be related to A029744 and A090989.
%K A063759 nonn,nice,easy
%O A063759 0,2
%A A063759 _N. J. A. Sloane_, Aug 14 2001
%E A063759 Information from A145751 included by _Joerg Arndt_, Dec 03 2012