This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A063784 #27 Aug 16 2024 21:19:18 %S A063784 73,757,1772893,48551233240513,378890487846991,3156404483062657, %T A063784 17390284913300671,280343912759041771,319913861581383373, %U A063784 487014306953858713,7824668707707203971,8443914727229480773,32564717507686012813,48095468363380957093,54811417636756749151 %N A063784 Primes that are the sum of cubes of divisors of some integer. %C A063784 Primes of the form p^6 + p^3 + 1 where p is a prime. - _Amiram Eldar_, Aug 16 2024 %H A063784 Amiram Eldar, <a href="/A063784/b063784.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from Harry J. Smith) %F A063784 Primes of form p = sigma_3(k). %F A063784 From _Amiram Eldar_, Aug 16 2024: (Start) %F A063784 a(n) = A001158(A063783(n)). %F A063784 a(n) = A060883(A066100(n)). (End) %e A063784 sigma_3(9) = 1 + 27 + 729 = 757, a prime. %t A063784 Select[Table[p^6 + p^3 + 1, {p, Prime[Range[500]]}], PrimeQ] (* _Amiram Eldar_, Aug 16 2024 *) %o A063784 (PARI) { n=0; p=0; for (m=1, 10^9, p=nextprime(p+1); if(isprime(q=p^6 + p^3 + 1), write("b063784.txt", n++, " ", q); if (n==1000, break)) ) } \\ _Harry J. Smith_, Aug 31 2009 %Y A063784 Cf. A001158, A023194, A060883, A063783, A066100. %K A063784 nonn %O A063784 1,1 %A A063784 _Labos Elemer_, Aug 17 2001