This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A063787 #99 Jan 12 2024 01:13:12 %S A063787 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,2,3, %T A063787 3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,2,3,3,4, %U A063787 3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,3,4,4,5,4,5,5,6,4 %N A063787 a(2^k) = k + 1 and a(2^k + i) = 1 + a(i) for k >= 0 and 0 < i < 2^k. %C A063787 Hamming weights of odd numbers. - _Friedjof Tellkamp_, Jan 11 2024 %H A063787 Michael Gilleland, <a href="/selfsimilar.html">Some Self-Similar Integer Sequences</a> %F A063787 a(n) = A000120(n-1) + 1. %F A063787 a(n) = log(A131136)/log(2). - _Stephen Crowley_, Aug 25 2008 %F A063787 a(n) = A007814(n) + A000120(n). - _Gary W. Adamson_, Jun 04 2009 %F A063787 a(n) = A000120(A086799(n)). - _Reinhard Zumkeller_, Jul 31 2010 %F A063787 a(n) = A000120(A047457(n)-1) = A000120(A047457(n)+1). - _Ilya Lopatin_, Mar 16 2014 %F A063787 a(n) = A000120(2n-1). - _Friedjof Tellkamp_, Jan 11 2024 %e A063787 k = 3: a(2^3) = a(8) = 4 = 3 + 1. %e A063787 k = 3, i = 5: a(2^3 + 5) = a(13) = 3 = 1 + 2 = 1 + a(5). %e A063787 From _Omar E. Pol_, Jun 12 2009: (Start) %e A063787 Triangle begins: %e A063787 1; %e A063787 2,2; %e A063787 3,2,3,3; %e A063787 4,2,3,3,4,3,4,4; %e A063787 5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5; %e A063787 6,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6; %e A063787 7,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,3,4,4,5,... %e A063787 (End) %t A063787 Table[DigitCount[2 n - 1, 2, 1], {n, 1, 105}] (* _Friedjof Tellkamp_, Jan 11 2024 *) %o A063787 (Python) %o A063787 def a(n): return bin(n-1).count('1') + 1 %o A063787 print([a(n) for n in range(1, 106)]) # _Michael S. Branicky_, Dec 16 2021 %o A063787 (PARI) a(n) = hammingweight(n-1) + 1; \\ _Michel Marcus_, Nov 23 2022 %Y A063787 Cf. A000079, A000120, A007814, A086799, A047457, A131136. %Y A063787 Cf. A330038 (partial sums). %K A063787 nonn %O A063787 1,2 %A A063787 _Reinhard Zumkeller_, Aug 16 2001