This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A063828 #28 Nov 02 2023 14:18:18 %S A063828 14,18,15,8,18,9,23,13,86,16,16,50,102,61,64,210,97,31,9,93,40,45,63, %T A063828 220,91,122,35,85,198,93,128,316,366,74,300,151,290,15,400,282,22,188, %U A063828 167,191,360,426,274,271,456,278,229,324,135,498,189 %N A063828 Smallest m associated with n-th Pillai prime (A063980). %H A063828 Charles R Greathouse IV, <a href="/A063828/b063828.txt">Table of n, a(n) for n = 1..10000</a> (first 1000 terms from T. D. Noe) %H A063828 G. E. Hardy and M. V. Subbarao, <a href="https://www.jstor.org/stable/2695445">A modified problem of Pillai and some related questions</a>, Amer. Math. Monthly 109 (2002), no. 6, 554-559. %e A063828 14! + 1 == 0 (mod 23), while 23 != 1 (mod 14), where 23=A063980(1) so a(1)=14. %t A063828 nn=1000; fact=1+Rest[FoldList[Times,1,Range[nn]]]; t={}; Do[p=Prime[i]; m=2; While[m<p && !(Mod[p,m]!=1 && Mod[fact[[m]],p]==0), m++]; If[m<p, AppendTo[t,m]], {i,2,PrimePi[nn]}]; t (* _T. D. Noe_, Apr 22 2011 *) %o A063828 (PARI) first(p)=my(t=Mod(5040, p)); for(m=8, p, t*=m; if(t==-1 && p%m!=1, return(m))); 0 %o A063828 Pillai(p)=my(t=Mod(5040, p)); for(m=8, p-2, t*=m; if(t==-1 && p%m!=1, return(1))); 0 %o A063828 apply(first, select(Pillai, primes(300))) \\ _Charles R Greathouse IV_, Feb 10 2013 %Y A063828 Cf. A063980, A211411. %K A063828 nonn %O A063828 1,1 %A A063828 _N. J. A. Sloane_, Sep 23 2001 %E A063828 More terms from _Vladeta Jovovic_, Sep 27 2001