This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A063851 #29 Mar 31 2023 14:16:46 %S A063851 1,1,1,1,1,1,1,1,1,4,1,1,1,11,11,1,1,1,135,2628,135,1,1,1,4382, %T A063851 9276601,9276601,4382,1,1,1,312356 %N A063851 Triangle T(n,k) (n >= 3, k = 1..n-2) read by rows giving number of nonisomorphic nondegenerate oriented matroids with n points in n-k dimensions. %H A063851 Lukas Finschi, <a href="https://finschi.com/math/om/">Homepage of Oriented Matroids</a> [Gives T(9, 5) = T(9, 6) = 9276595.] %H A063851 L. Finschi and K. Fukuda, <a href="http://www.cccg.ca/proceedings/2001/finschi-1053.ps.gz">Complete combinatorial generation of small point set configurations and hyperplane arrangements</a>, pp. 97-100 in Abstracts 13th Canadian Conference on Computational Geometry (CCCG '01), Waterloo, Aug. 13-15, 2001. %H A063851 Lukas Finschi, <a href="https://doi.org/10.3929/ethz-a-004255224">A Graph Theoretical Approach for Reconstruction and Generation of Oriented Matroids</a>, A dissertation submitted to the Swiss Federal Institute of Technology, Zurich for the degree of Doctor of Mathematics, 2001. %H A063851 Komei Fukuda, Hiroyuki Miyata and Sonoko Moriyama, <a href="https://doi.org/10.1007/s00454-012-9470-0">Complete Enumeration of Small Realizable Oriented Matroids</a>. Discrete Comput. Geom. 49 (2013), no. 2, 359--381. MR3017917. - From _N. J. A. Sloane_, Feb 16 2013 [Beware typos in Table 1.] %e A063851 Triangle begins: %e A063851 1 %e A063851 1,1, %e A063851 1,1,1, %e A063851 1,1,1,4, %e A063851 1,1,1,11,11, %e A063851 1,1,1,135,2628,135, %e A063851 1,1,1,4382,9276601,9276601,4382, %e A063851 1,1,1,312356,... %Y A063851 For numbers when degenerate matroids are included see A063804. Two rightmost diagonals are A006248 and A222315. Row sums give A063852. %K A063851 nonn,tabl,nice,more %O A063851 3,10 %A A063851 _N. J. A. Sloane_, Aug 26 2001 %E A063851 More terms taken from Fukuda et al., 2013. - _N. J. A. Sloane_, Feb 16 2013