A063891 Numbers k such that nusigma(usigma(k)) = 2k, where usigma(k) is the sum of unitary divisors of k (A034448) and nusigma(k) is the sum of non-unitary divisors of k (A048146).
1631, 2016, 8928, 11808, 36576, 45360, 1486080, 2359008, 3093552, 37748448, 101350656, 150994656, 2885670144
Offset: 1
Programs
-
Mathematica
usigma[1] = 1; usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); nusigma[n_] := DivisorSigma[1,n] - usigma[n]; Select[Range[12000], nusigma[usigma[#]] == 2# &] (* Amiram Eldar, Apr 10 2019 *)
-
PARI
u(n) = sumdiv(n,d, if(gcd(d,n/d)==1,d)); z(n)=sigma(n)-u(n) ; for(n=1,10^8, if(z(u(n))==2*n,print1(n, ", ")))
Extensions
More terms from Thomas Baruchel, Oct 22 2003
a(11)-a(13) from Amiram Eldar, Apr 10 2019
Comments