This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A063890 #17 Jul 02 2025 20:00:25 %S A063890 1,1,0,0,2,3,0,0,12,21,0,0,113,202,0,0,1218,2241,0,0,14326,26776,0,0, %T A063890 177714,335607,0,0,2287975,4353975,0,0,30282850,57965473,0,0, %U A063890 409476546,787414730,0,0,5631955466,10870618388,0,0,78545902971,152074824054,0,0 %N A063890 Number of solutions to +- 1 +- 2 +- 3 +- ... +- n = n. %H A063890 Ray Chandler, <a href="/A063890/b063890.txt">Table of n, a(n) for n = 0..1000</a> %F A063890 a(n) = [x^n] Product_{k=1..n} (x^k + 1/x^k). - _Ilya Gutkovskiy_, Jan 28 2022 %e A063890 a(8) = 12 because 8 = 1+2+3+4+5-6+7-8 = -1+2+3+4-5+6+7-8 = 1-2+3-4+5+6+7-8 = -1-2-3+4+5+6+7-8 = -1+2+3+4+5-6-7+8 = 1-2+3+4-5+6-7+8 = 1+2-3-4+5+6-7+8 = -1-2+3-4+5+6-7+8 = 1+2-3+4-5-6+7+8 = -1-2+3+4-5-6+7+8 = -1+2-3-4+5-6+7+8 = 1-2-3-4-5+6+7+8. %t A063890 f[n_, s_] := f[n, s]=Which[n==0, If[s==0, 1, 0], Abs[s]>(n*(n+1))/2, 0, True, f[n-1, s-n]+f[n-1, s+n]]; a[n_] := f[n, n] %t A063890 nmax = 44; d = {1}; a1 = {1}; %t A063890 Do[ %t A063890 d = PadLeft[d, Length[d] + 2 n] + PadRight[d, Length[d] + 2 n]; %t A063890 i = Ceiling[Length[d]/2] + n; %t A063890 AppendTo[a1, If[i > Length[d], 0, d[[i]]]]; %t A063890 , {n, nmax}]; %t A063890 a1 (* _Ray Chandler_, Mar 25 2014 *) %Y A063890 Cf. A025591, A063865-A063867. %K A063890 nonn %O A063890 0,5 %A A063890 _Vladeta Jovovic_, Aug 28 2001 %E A063890 More terms from _Dean Hickerson_, Aug 30 2001