This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A063897 #14 Jul 11 2016 22:40:02 %S A063897 5,8,22,274,65704,4295145556,18446744073810262144 %N A063897 a(n) is the least k such that k - A000215(j), j=0..n, are all primes. %C A063897 Is this sequence finite? %C A063897 The prime k-tuples conjecture implies that the sequence is infinite. - _Robert Israel_, Jul 11 2016 %e A063897 For j=0 a(0)=5 because 5-3 is prime. %e A063897 For j=1 a(1)=8 because 8-5, 8-3 are all primes. %e A063897 For j=2 a(2)=22 because 22-17, 22-5, 22-3 are all primes. %e A063897 For j=3 a(3)=274 because 274-257, 274-17, 274-5, 274-3 are all primes. %p A063897 f:= proc(n) local r, j, good; %p A063897 for r from 2^(2^n)+4 by 2 do %p A063897 good:= true; %p A063897 for j from 0 to n do %p A063897 if not isprime(r - 2^(2^j)-1) then good:= false; break fi %p A063897 od; %p A063897 if good then return(r) fi %p A063897 od %p A063897 end proc: %p A063897 f(0):= 5: %p A063897 map(f, [$0..5]); # _Robert Israel_, Jul 11 2016 %o A063897 (PARI) okprime(mink, vecf) = {for (i = 1, #vecf, if (! isprime(mink - vecf[i]), return (0));); return (1);} %o A063897 a(n) = {mink = 2^(2^n) + 2; vecf = vector(n+1, i, 2^(2^(i-1)) + 1); while (! okprime(mink, vecf), mink++); mink;} \\ _Michel Marcus_, Sep 28 2013 %Y A063897 Cf. A000215. %K A063897 hard,more,nonn %O A063897 0,1 %A A063897 _Felice Russo_, Aug 29 2001 %E A063897 18446744073810262144 from _Thomas Baruchel_, Oct 21 2003