cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A063919 Sum of proper unitary divisors (or unitary aliquot parts) of n, including 1.

This page as a plain text file.
%I A063919 #29 Jun 12 2018 21:14:44
%S A063919 1,1,1,1,1,6,1,1,1,8,1,8,1,10,9,1,1,12,1,10,11,14,1,12,1,16,1,12,1,42,
%T A063919 1,1,15,20,13,14,1,22,17,14,1,54,1,16,15,26,1,20,1,28,21,18,1,30,17,
%U A063919 16,23,32,1,60,1,34,17,1,19,78,1,22,27,74,1,18,1,40,29,24,19,90,1,22,1,44
%N A063919 Sum of proper unitary divisors (or unitary aliquot parts) of n, including 1.
%C A063919 For definition of unitary divisor see A034448.
%H A063919 Antti Karttunen, <a href="/A063919/b063919.txt">Table of n, a(n) for n = 1..65537</a> (first 1000 terms from Harry J. Smith)
%F A063919 a(n) = A034460(n), n>1. - _R. J. Mathar_, Oct 02 2008
%F A063919 For n > 1: a(n) = sum (A077610(n,k): k = 1 .. A034444(n) - 1). - _Reinhard Zumkeller_, Mar 12 2012
%e A063919 a(10) = 8 because the unitary divisors of 10 are 1, 2, 5 and 10, with sum 18 and 18-10 = 8.
%p A063919 A063919 := proc(n)
%p A063919     if n = 1 then
%p A063919         1;
%p A063919     else
%p A063919         A034448(n)-n ;
%p A063919     end if;
%p A063919 end proc: # _R. J. Mathar_, May 14 2013
%t A063919 a[n_] := Total[Select[Divisors[n], GCD[#, n/#] == 1&]]-n; a[1] = 1; Table[a[n], {n, 82}] (* _Jean-François Alcover_, Aug 31 2011 *)
%o A063919 (PARI) usigma(n) = sumdiv(n, d, if(gcd(d, n/d)==1, d))
%o A063919 { for (n=1, 1000, if (n>1, a=usigma(n) - n, a=1); write("b063919.txt", n, " ", a) ) } \\ _Harry J. Smith_, Sep 02 2009
%o A063919 (PARI)
%o A063919 A034460(n) = (sumdivmult(n, d, if(gcd(d, n/d)==1, d))-n); \\ From A034460
%o A063919 A063919(n) = if(1==n,n,A034460(n)); \\ _Antti Karttunen_, Jun 12 2018
%o A063919 (Haskell)
%o A063919 a063919 1 = 1
%o A063919 a063919 n = sum $ init $ a077610_row n
%o A063919 -- _Reinhard Zumkeller_, Mar 12 2012
%Y A063919 The values of sequence are A034448(n)-n (for n > 1).
%Y A063919 Cf. A001065, A034448, A034460.
%K A063919 easy,nonn,nice
%O A063919 1,6
%A A063919 _Felice Russo_, Aug 31 2001