This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A063937 #24 Feb 16 2025 08:32:45 %S A063937 3,8,22,24,66,70,76,94,115,119,170,210,214,217,228,252,265,282,310, %T A063937 316,322,345,357,382,385,490,497,510,517,522,527,580,612,642,651,679, %U A063937 710,716,742,745,782,795,801,833,862,889,920,930,935,948,952,966,970 %N A063937 Sum of unitary divisors of n is a square > 1. %C A063937 A unitary divisor of n is a divisor d of n such that gcd(d, n/d) = 1. %H A063937 Amiram Eldar, <a href="/A063937/b063937.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from Harry J. Smith) %F A063937 a(n) > 1 and A010052(A034448(a(n))) = 1. - _Reinhard Zumkeller_, Aug 15 2012 %e A063937 The unitary divisors of 3 are 1,3 and then 3 + 1 = 4 is a square. %t A063937 udQ[n_]:=Module[{totdivs=Total[Sort[Flatten[Outer[Times,Sequence@@({1,#}&/@Power@@@FactorInteger[n])]]]]},totdivs>1&&IntegerQ[Sqrt[totdivs]]]; Select[Range[1000],udQ] (* _Harvey P. Dale_, Apr 22 2012, using program from Eric Weisstein at https://mathworld.wolfram.com/UnitaryDivisor.html *) %o A063937 (PARI) us(n) = sumdiv(n, d, if(gcd(d, n/d)==1, d)) %o A063937 { n=0; for (m=1, 10^9, u=us(m); if (issquare(u) && u > 1, write("b063937.txt", n++, " ", m); if (n==1000, break)) ) } \\ _Harry J. Smith_, Sep 03 2009 %o A063937 (Haskell) %o A063937 import Data.List (findIndices) %o A063937 a063937 n = a063937_list !! (n-1) %o A063937 a063937_list = map (+ 2) $ %o A063937 findIndices ((== 1) . a010052) $ tail a034448_list %o A063937 -- _Reinhard Zumkeller_, Aug 15 2012 %Y A063937 Cf. A034448, A063936. %K A063937 easy,nice,nonn %O A063937 1,1 %A A063937 _Felice Russo_, Aug 31 2001