This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A063962 #32 Mar 07 2021 19:04:44 %S A063962 0,0,0,1,0,1,0,1,1,1,0,2,0,1,1,1,0,2,0,1,1,1,0,2,1,1,1,1,0,3,0,1,1,1, %T A063962 1,2,0,1,1,2,0,2,0,1,2,1,0,2,1,2,1,1,0,2,1,2,1,1,0,3,0,1,2,1,1,2,0,1, %U A063962 1,3,0,2,0,1,2,1,1,2,0,2,1,1,0,3,1,1,1,1,0,3,1,1,1,1,1,2,0,2,1,2,0,2,0,1,3 %N A063962 Number of distinct prime divisors of n that are <= sqrt(n). %C A063962 For all primes p: a(p) = 0 (not marked) and for k > 1 a(p^k) = 1. %C A063962 a(1) = 0 and for n > 0 a(n) is the number of marks when applying the sieve of Eratosthenes where a stage for prime p starts at p^2. %C A063962 If we define a divisor d|n to be inferior if d <= n/d, then inferior divisors are counted by A038548 and listed by A161906. This sequence counts inferior prime divisors. - _Gus Wiseman_, Feb 25 2021 %H A063962 Harry J. Smith, <a href="/A063962/b063962.txt">Table of n, a(n) for n = 1..1000</a> %F A063962 G.f.: Sum_{k>=1} x^(prime(k)^2) / (1 - x^prime(k)). - _Ilya Gutkovskiy_, Apr 04 2020 %F A063962 a(A002110(n)) = n for n > 2. - _Gus Wiseman_, Feb 25 2021 %e A063962 a(33) = a(3*11) = 1, as 3^2 = 9 < 33 and 11^2 = 121 > 33. %e A063962 From _Gus Wiseman_, Feb 25 2021: (Start) %e A063962 The a(n) inferior prime divisors (columns) for selected n: %e A063962 n = 3 8 24 3660 390 3570 87780 %e A063962 --------------------------------- %e A063962 {} 2 2 2 2 2 2 %e A063962 3 3 3 3 3 %e A063962 5 5 5 5 %e A063962 13 7 7 %e A063962 17 11 %e A063962 19 %e A063962 (End) %p A063962 with(numtheory): a:=proc(n) local c,F,f,i: c:=0: F:=factorset(n): f:=nops(F): for i from 1 to f do if F[i]^2<=n then c:=c+1 else c:=c: fi od: c; end: seq(a(n),n=1..105); # _Emeric Deutsch_ %t A063962 Join[{0},Table[Count[Transpose[FactorInteger[n]][[1]],_?(#<=Sqrt[n]&)],{n,2,110}]] (* _Harvey P. Dale_, Mar 26 2015 *) %o A063962 (PARI) { for (n=1, 1000, f=factor(n)~; a=0; for (i=1, length(f), if (f[1, i]^2<=n, a++, break)); write("b063962.txt", n, " ", a) ) } \\ _Harry J. Smith_, Sep 04 2009 %o A063962 (Haskell) %o A063962 a063962 n = length [p | p <- a027748_row n, p ^ 2 <= n] %o A063962 -- _Reinhard Zumkeller_, Apr 05 2012 %Y A063962 Cf. A055399, A001221. %Y A063962 Cf. A027748, A063962. %Y A063962 Zeros are at indices A008578. %Y A063962 The divisors are listed by A161906 and add up to A097974. %Y A063962 Dominates A333806 (the strictly inferior version). %Y A063962 The superior version is A341591. %Y A063962 The strictly superior version is A341642. %Y A063962 A001221 counts prime divisors, with sum A001414. %Y A063962 A033677 selects the smallest superior divisor. %Y A063962 A038548 counts inferior divisors. %Y A063962 A063538/A063539 have/lack a superior prime divisor. %Y A063962 A161908 lists superior divisors. %Y A063962 A207375 lists central divisors. %Y A063962 A217581 selects the greatest inferior prime divisor. %Y A063962 A341676 lists the unique superior prime divisors. %Y A063962 - Inferior: A033676, A066839, A069288, A072499, A333749, A333750. %Y A063962 - Superior: A051283, A059172, A070038, A072500, A116883, A341592, A341675. %Y A063962 - Strictly Inferior: A056924, A060775, A070039, A333805, A341596, A341674. %Y A063962 - Strictly Superior: A056924, A140271, A238535, A341594, A341595, A341673. %Y A063962 Cf. A000005, A001248, A005117, A006530, A020639, A048098, A064052, A341643. %K A063962 nonn %O A063962 1,12 %A A063962 _Reinhard Zumkeller_, Sep 04 2001 %E A063962 Revised definition from _Emeric Deutsch_, Jan 31 2006