This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A063984 #70 Sep 22 2023 08:54:55 %S A063984 0,0,1,1,4,4,7,10,17,19,27,34,45,52,68,79,98,112,135,154,183,199,237, %T A063984 262,300,332,378,416,469,508,573,616,688,732,818,872,959,1020,1120, %U A063984 1202,1305,1391,1504,1598,1724,1815,1961,2064,2220,2332,2497,2625,2785 %N A063984 Minimal number of integer points in the Euclidean plane which are contained in the interior of any convex n-gon whose vertices have integer coordinates. %C A063984 Consider convex lattice n-gons, that is, polygons whose n vertices are points on the integer lattice Z^2 and whose interior angles are strictly less than Pi. a(n) is the least possible number of lattice points in the interior of such an n-gon. %C A063984 The result a(5) = 1 seems to be due to Ehrhart. Using Pick's formula, it is not difficult to prove that the determination of a(k) is equivalent to the determination of the minimal area of a convex k-gon whose vertices are lattice points. %C A063984 Results before 2018 for odd n came from the following authors: a(3) (trivial), a(5) (Arkinstall), a(7) and a(9) (Rabinowitz), a(11) (Olszewska), a(13) (Simpson) and a(15) (Castryck). - _Jamie Simpson_, Oct 18 2022 %H A063984 I. Barany and N. Tokushige, <a href="http://www.renyi.hu/~barany/cikkek/94.pdf">The minimum area of convex lattice n-gons</a>, Combinatorica, 24 (No. 2, 2004), 171-185. %H A063984 Tian-Xin Cai, <a href="https://doi.org/10.11650/twjm/1500406114">On the minimum area of convex lattice polygons</a>, Taiwanese Journal of Mathematics, Vol. 1, No. 4 (1997). %H A063984 W. Castryck, <a href="http://dx.doi.org/10.1007/s00454-011-9376-2">Moving Out the Edges of a Lattice Polygon</a>, Discrete Comput. Geom., 47 (2012), pp. 496-518. %H A063984 Code Golf StackExchange, <a href="https://codegolf.stackexchange.com/questions/253633/the-smallest-area-of-a-convex-grid-polygon">The smallest area of a convex grid polygon</a>, fastest-code challenge, started by Peter Kagey, Oct 22 2022, provides several programs. %H A063984 C. J. Colbourn, R. J. Simpson, <a href="https://doi.org/10.1017/S0004972700030094">A note on bounds on the minimum area of convex lattice polygons</a>, Bull. Austral. Math. Soc. 45 (1992) 237-240. %H A063984 Steven R. Finch, <a href="/A249455/a249455.pdf">Convex Lattice Polygons</a>, December 18, 2003. [Cached copy, with permission of the author] %H A063984 Hugo Pfoertner, <a href="/A063984/a063984.pdf">Illustrations of optimal polygons for n <= 23</a>, (2018). %H A063984 S. Rabinowitz, <a href="http://stanleyrabinowitz.com/bibliography/bounds.pdf">O(n^3) bounds for the area of a convex lattice n-gon</a>, Geombinatorics, vol. II, 4(1993), p. 85-88. %H A063984 R. J. Simpson, <a href="http://dx.doi.org/10.1017/S0004972700028525">Convex lattice polygons of minimum area</a>, Bulletin of the Australian Math. Society, 42 (1990), pp. 353-367. %F A063984 a(n) = A070911(n)/2 - n/2 + 1. [Simpson] %F A063984 See Barany & Tokushige for asymptotics. %F A063984 a(n) = min(g: A322345(g) >= n). - _Andrey Zabolotskiy_, Apr 23 2023 %e A063984 For example, every convex pentagon whose vertices are lattice points contains at least one lattice point and it is not difficult to construct such a pentagon with only one interior lattice point. Thus a(5) = 1. %Y A063984 Cf. A070911, A089187, A321693, A322029, A322345. %K A063984 nice,nonn %O A063984 3,5 %A A063984 Pierre Bornsztein (pbornszt(AT)club-internet.fr), Sep 06 2001; May 20 2002 %E A063984 Additional comments from _Steven Finch_, Dec 06 2003 %E A063984 More terms from _Matthias Henze_, Jul 27 2015 %E A063984 a(17)-a(23) from _Hugo Pfoertner_, Nov 27 2018 %E A063984 a(24)-a(25) from _Hugo Pfoertner_, Dec 04 2018 %E A063984 a(26)-a(55) from and definition clarified by _Günter Rote_, Sep 19 2023