cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064025 Length of period of the continued fraction for sqrt(n!).

This page as a plain text file.
%I A064025 #28 Feb 02 2021 20:07:16
%S A064025 1,2,2,2,4,2,16,48,8,4,56,180,44,156,300,7936,10388,11516,9104,
%T A064025 13469268,2684084,2418800,28468692,143007944,85509116,402570696,
%U A064025 2287868888,204306960,48715166536,147160740856,317585614148
%N A064025 Length of period of the continued fraction for sqrt(n!).
%F A064025 a(n) = A003285(A000142(n)). - _Michel Marcus_, Sep 25 2019
%e A064025 Quotients for 10! are [[1904], [1, 15, 1, 13, 1, 15, 1, 3808]], so period length of 10! is 8.
%p A064025 with(numtheory): [seq(nops(cfrac(sqrt(k!),'periodic','quotients')[2]),k=2..16)];
%t A064025 Do[ Print[ Length[ Last[ ContinuedFraction[ Sqrt[ n! ]]]]], {n, 2, 24} ]
%Y A064025 Cf. A000142, A003285.
%K A064025 nonn,more
%O A064025 2,2
%A A064025 _Labos Elemer_, Sep 18 2001
%E A064025 More terms from _Robert G. Wilson v_, Oct 01 2001
%E A064025 a(25)-a(28) from _Daniel Suteu_, Jan 24 2019
%E A064025 a(29) from _Chai Wah Wu_, Sep 23 2019
%E A064025 a(30) from _Chai Wah Wu_, Sep 25 2019
%E A064025 a(31) from _Chai Wah Wu_, Jan 27 2021
%E A064025 a(32) from _Chai Wah Wu_, Feb 02 2021