A064028 Sum of the unitary divisors of n!.
1, 3, 12, 36, 216, 1020, 8160, 61920, 507744, 4383392, 52600704, 624249600, 8739494400, 109190390400, 1583122968000, 25318378008000, 455730804144000, 8193040840252800, 163860816805056000, 3256371347261760000, 67204676251838361600, 1366492477414792734720
Offset: 1
Keywords
Examples
n=6, 6! = 720, sum of the 8 unitary ones of its 30 divisors is 1020, a(6) = 720+1+16+45+9+80+5+144 = 1020.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..450
- Charles R. Wall, Problem H-374, Advanced Problems and Solutions, The Fibonacci Quarterly, Vol. 22, No. 3 (1984), p. 280; Bounds of Joy, Solution to Problem H-374 by the proposer, ibid., Vol. 24, No. 2 (1986), p. 188.
Programs
-
Mathematica
usigma[1] = 1; usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); usigma/@ (Range[17]!) (* Amiram Eldar, Jun 23 2019 *)
-
PARI
valp(n,p)=my(s); while(n\=p, s+=n); s a(n)=my(s=1); forprime(p=2,n, s*=p^valp(n,p)+1); s \\ Charles R Greathouse IV, Jan 26 2023
Formula
a(n)/n! <= 2 (while usigma(n)/n and sigma(n!)/n! are unbounded; Wall, 1984). - Amiram Eldar, Feb 08 2022