A064034 2-dimensional table T(i, j) defined for any integers i and j, read by antidiagonals in the southeast quadrant. T(i, j) gives the "Fibonacci depth" of (i, j): form the Fibonacci sequence starting with i, j: w(0) = i, w(1) = j, w(n) = w(n-1) + w(n-2). It can be shown that for all but finitely many n, the w(n) have the same sign, i.e., are all positive, all negative or all zero. T(i, j), is the smallest number of iterations required to find out which of these cases holds.
0, 1, 2, 1, 3, 2, 1, 1, 4, 2, 1, 1, 3, 2, 2, 1, 1, 1, 5, 2, 2, 1, 1, 1, 3, 4, 2, 2, 1, 1, 1, 1, 3, 2, 2, 2, 1, 1, 1, 1, 3, 6, 2, 2, 2, 1, 1, 1, 1, 1, 3, 4, 2, 2, 2, 1, 1, 1, 1, 1, 3, 5, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 3, 4, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 3, 3, 4, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 3, 7, 2, 2, 2, 2, 2
Offset: 0
Examples
T(2, -1) = 4 because the generalized Fibonacci sequence 2 -1 1 0 1 1 requires 4 iterations before two consecutive values with the same sign occur.
References
- R. D. Arthan. An Irrational Construction of R from Z. In Theorem Proving in Higher Order Logics, R. J. Boulton and P.B. Jackson Editors LNCS 2152. Springer Verlag, 2001.
Links
- R. D. Arthan An Irrational Construction of R from Z
Crossrefs
Cf. A000045.
Comments