cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064037 Number of walks of length 2n on cubic lattice, starting and finishing at origin and staying in first (nonnegative) octant.

This page as a plain text file.
%I A064037 #42 Apr 20 2025 03:47:27
%S A064037 1,3,24,285,4242,73206,1403028,29082339,640672890,14818136190,
%T A064037 356665411440,8874875097270,227135946200940,5955171596514900,
%U A064037 159439898653636320,4347741997166750235,120493374240909299130,3387806231071627372590,96488484001399878973200
%N A064037 Number of walks of length 2n on cubic lattice, starting and finishing at origin and staying in first (nonnegative) octant.
%H A064037 Nachum Dershowitz, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL20/Dershowitz/dersh3.html">Touchard's Drunkard</a>, Journal of Integer Sequences, Vol. 20 (2017), #17.1.5.
%H A064037 R. K. Guy, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL3/GUY/catwalks.html">Catwalks, sandsteps and Pascal pyramids</a>, J. Integer Sequences, Vol. 3 (2000), Article #00.1.6.
%H A064037 James Mallos, <a href="https://doi.org/10.3390/math7020165">A 6-Letter 'DNA' for Baskets with Handles</a>, Mathematics (2019) Vol. 7, No. 2, 165.
%H A064037 G. Xin, <a href="http://dx.doi.org/10.1016/j.aam.2007.04.007">Determinant formulas relating to tableaux of bounded height</a>, Adv. Appl. Math. 45 (2010) 197-211.
%F A064037 a(n) = Sum_{j=0..n} C(2n, 2j)*c(j)*c(j+1)*c(n-j) where c(k)=A000108(k).
%F A064037 G.f. is a large expression in terms of hypergeometric functions and sqrt's, see Maple program. - _Mark van Hoeij_, Apr 19 2013
%F A064037 a(n) = binomial(2*n,n)*((7*n+11)*A002893(n+1)-(9*n+9)*A002893(n))/(2*(n+1)*(n+2)^2*(n+3)). - _Mark van Hoeij_, Apr 19 2013
%F A064037 a(n) ~ 2^(2*n - 2) * 3^(2*n + 9/2) / (Pi^(3/2) * n^(9/2)). - _Vaclav Kotesovec_, Jun 09 2019
%F A064037 D-finite with recurrence: (n+3)*(n+2)*(n+1)*a(n) -4*(2*n-1)*(5*n^2+10*n+3)*a(n-1) +36*(n-1)*(2*n-1)*(2*n-3)*a(n-2)=0. - _R. J. Mathar_, Feb 20 2020
%e A064037 a(1)=3 and a(2)=24 since if the possible steps are Right, Left, Up, Down, Forwards and Backwards, then the two-step paths are FB, RL and UD, while the four-step paths are FBFB, FBRL, FBUD, FFBB, FRBL, FRLB, FUBD, FUDB, RFBL, RFLB, RLFB, RLRL, RLUD, RRLL, RUDL, RULD, UDFB, UDRL, UDUD, UFBD, UFDB, URDL, URLD, UUDD.
%p A064037 f := -3*x+(1+sqrt(1-40*x+144*x^2))/4;
%p A064037 H := (1-2*f)*f*hypergeom([1/6,1/3],[1],27*(1-2*f)*f^2)^2/sqrt(1+6*f);
%p A064037 r2 := (1-4*x)*(36*x-1)*(1920*x^2+166*x+1)*x^2;
%p A064037 r1 := -(138240*x^4+7776*x^3+200*x^2-92*x-1)*x;
%p A064037 r0 := 19800*x^3+764*x^2-86*x-1;
%p A064037 ogf := (r2*diff(H,x,x)+r1*diff(H,x)+r0*H)/(5760*x^4) + 1/(2*x);
%p A064037 series(ogf, x=0, 30); # _Mark van Hoeij_, Apr 19 2013
%p A064037 # second Maple program:
%p A064037 a:= proc(n) option remember; `if`(n<2, 2*n+1, ((8*n-4)*(5*n^2+10*n+3)
%p A064037        *a(n-1)-36*(2*n-1)*(2*n-3)*(n-1)*a(n-2))/((n+1)*(n+2)*(n+3)))
%p A064037     end:
%p A064037 seq(a(n), n=0..20);  # _Alois P. Heinz_, Mar 29 2019
%t A064037 Table[Sum[Binomial[2*n, 2*j] * CatalanNumber[j] * CatalanNumber[j+1] * CatalanNumber[n-j], {j, 0, n}], {n, 0, 20}] (* _Vaclav Kotesovec_, Jun 09 2019 *)
%o A064037 (PARI)
%o A064037 C(n,k) = binomial(n,k);
%o A064037 c(n) = binomial(2*n,n)/(n+1);
%o A064037 a(n) = sum(j=0,n, C(2*n, 2*j)*c(j)*c(j+1)*c(n-j));
%o A064037 /* _Joerg Arndt_, Apr 19 2013 */
%Y A064037 Cf. A064036. The two- and one-dimensional equivalents are A005568 and A000108.
%K A064037 nonn
%O A064037 0,2
%A A064037 _Henry Bottomley_, Aug 23 2001
%E A064037 Added more terms, _Joerg Arndt_, Apr 19 2013