cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064046 Number of length 6 walks on an n-dimensional hypercubic lattice starting and finishing at the origin and staying in the nonnegative part.

This page as a plain text file.
%I A064046 #18 Sep 08 2022 08:45:04
%S A064046 0,5,70,285,740,1525,2730,4445,6760,9765,13550,18205,23820,30485,
%T A064046 38290,47325,57680,69445,82710,97565,114100,132405,152570,174685,
%U A064046 198840,225125,253630,284445,317660,353365,391650,432605,476320,522885,572390
%N A064046 Number of length 6 walks on an n-dimensional hypercubic lattice starting and finishing at the origin and staying in the nonnegative part.
%H A064046 Vincenzo Librandi, <a href="/A064046/b064046.txt">Table of n, a(n) for n = 0..1000</a>
%H A064046 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).
%F A064046 a(n) = 5*n*(3*n^2 - 3*n + 1).
%F A064046 a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
%F A064046 a(n) = A064045(n, 3).
%F A064046 a(n) = a(n-1) + 15*A049450(n-1) + 30*A001477(n-1) + 5*A000012(n-1).
%F A064046 G.f.: 5*x*(7*x^2 + 10*x + 1)/(x-1)^4. [_Colin Barker_, Jul 21 2012]
%t A064046 LinearRecurrence[{4,-6,4,-1},{0,5,70,285},40] (* _Harvey P. Dale_, Dec 02 2012 *)
%o A064046 (Magma) [5*n*(3*n^2-3*n+1): n in [0..40]]; // _Vincenzo Librandi_, Jun 16 2011
%Y A064046 Numbers of walks of length 0, 1, 2, 3, 4 and 5 are A000012, A000004, A001477, A000004, A049450 and A000004.
%K A064046 nonn,easy
%O A064046 0,2
%A A064046 _Henry Bottomley_, Aug 23 2001