This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A064047 #20 Mar 29 2022 17:08:03 %S A064047 1,2,3,3,4,5,6,6,5,6,7,8,9,10,11,10,11,12,13,13,14,15,16,17,15,16,15, %T A064047 15,16,17,18,17,18,19,20,20,21,22,23,24,25,26,27,27,28,29,30,30,26,26, %U A064047 27,27,28,29,30,31,32,33,34,35,36,37,38,36,37,38,39,39,40,41,42,42,43 %N A064047 Number of numbers only appearing once in 1-to-n multiplication table. %C A064047 For n <= 127, this is the same as the number of vertices of the polytope representing the number n. The latter is given in A335152. The sequences differ starting at n = 128. See A335152 and Lu and Deng, Appendix. - _N. J. A. Sloane_, May 25 2020 %C A064047 a(n) is the number of x in [1,n] such that x^2 has no divisor d with x < d <= n. - _Robert Israel_, Sep 03 2020 %H A064047 Robert Israel, <a href="/A064047/b064047.txt">Table of n, a(n) for n = 1..10000</a> %H A064047 Ya-Ping Lu and Shu-Fang Deng, <a href="http://arxiv.org/abs/2003.08968">Properties of Polytopes Representing Natural Numbers</a>, arXiv:2003.08968 [math.GM], 2020. %e A064047 In the 1-to-5 multiplication table, four numbers (1,9,16,25) appear once only. Therefore a(5)=4. %p A064047 N:= 200: # for a(1)..a(N) %p A064047 V:= Vector(N): %p A064047 for x from 1 to N do %p A064047 y:= min(N, min(select(`>`,numtheory:-divisors(x^2),x))-1); %p A064047 V[x..y]:= map(`+`,V[x..y],1) %p A064047 od: %p A064047 convert(V,list); # _Robert Israel_, Sep 03 2020 %Y A064047 Cf. A064048, A057142, A057143, A057144, A335152. %K A064047 nonn %O A064047 1,2 %A A064047 Matthew Somerville (matthew.somerville(AT)trinity.oxford.ac.uk), Aug 24 2001