cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064053 Auxiliary sequence gamma(n) used to compute coefficients in series expansion of the mock theta function f(q) via A(n) = Sum_{r=0..n} p(r)*gamma(n-r), with p(r) the partition function A000041.

This page as a plain text file.
%I A064053 #43 Feb 16 2025 08:32:45
%S A064053 1,0,-4,4,-4,4,-4,8,-4,0,-4,8,-4,0,-4,4,-4,0,0,8,-4,-4,-4,8,0,0,0,4,
%T A064053 -4,0,-4,8,-4,-4,0,8,0,0,-8,4,-8,0,4,8,-4,0,-8,8,0,0,-4,4,-4,0,-4,12,
%U A064053 -4,0,0,8,-4,0,-8,0,-4,4,4,8,-4,0,-12,8,0,0,0,4,-4,-4,-4,8,-8,0,0,8,4,4,-8,0,-4,0,0,4,-4,0,-8,12,0,0,4,0,-4,0,-4
%N A064053 Auxiliary sequence gamma(n) used to compute coefficients in series expansion of the mock theta function f(q) via A(n) = Sum_{r=0..n} p(r)*gamma(n-r), with p(r) the partition function A000041.
%C A064053 See Dragonette for the definition of f(q) and A(n). - _N. J. A. Sloane_, Sep 24 2022
%D A064053 G. E. Andrews, The theory of partitions, Cambridge University Press, Cambridge, 1998, page 82, Example 5. MR1634067 (99c:11126). [The Gamma function used by Andrews is the classical Gamma function, which is different from the gamma(n) of this sequence. - _N. J. A. Sloane_, Sep 24 2022]
%H A064053 G. C. Greubel, <a href="/A064053/b064053.txt">Table of n, a(n) for n = 0..5000</a>
%H A064053 L. A. Dragonette, <a href="http://dx.doi.org/10.1090/S0002-9947-1952-0049927-8">Some Asymptotic Formulae for the Mock Theta Series of Ramanujan</a>, Trans. Amer. Math. Soc., 72 (1952), 474-500. See page 496.
%H A064053 L. A. Dragonette, <a href="/A064053/a064053.png">Some Asymptotic Formulae for the Mock Theta Series of Ramanujan</a>, Trans. Amer. Math. Soc., 72 (1952), 474-500. Enlargement of a portion of page 496 in order to show correct spelling of gamma(n).
%H A064053 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/MockThetaFunction.html">Mock Theta Function.</a>
%F A064053 G.f.: 1 + 4 * Sum_{k>0} (-1)^k * x^(k*(3*k + 1)/2) / (1 + x^k). - _Michael Somos_, Jun 19 2003
%F A064053 Convolution of this sequence and A000041 is A000025. - _Michael Somos_, Jun 19 2003
%F A064053 a(n) = 4 * A096661(n) unless n=0.
%e A064053 G.f. = 1 - 4*x^2 + 4*x^3 - 4*x^4 + 4*x^5 - 4*x^6 + 8*x^7 - 4*x^8 - 4*x^10 + 8*x^11 - 4*x^12 - ...
%t A064053 a[ n_]:= SeriesCoefficient[1 +4 *Sum[(-1)^k*x^(k*(3*k+1)/2)/(1+x^k), {k, Quotient[Sqrt[1 +24*n] - 1, 6]}], {x, 0, n}]; (* _Michael Somos_, Apr 08 2015 *)
%o A064053 (PARI) {a(n) = if( n<1, n==0, 4 * polcoeff( sum(k=1, (sqrtint(24*n + 1) - 1) \ 6, (-1)^k * x^((3*k^2 + k)/2) / (1 + x^k), x * O(x^n)), n))}; /* _Michael Somos_, Mar 13 2006 */
%Y A064053 Cf. A000025, A000039, A000041, A000199, A096661.
%K A064053 sign
%O A064053 0,3
%A A064053 _Eric W. Weisstein_, Aug 28 2001
%E A064053 Entry revised by _Michael Somos_, Mar 13 2006
%E A064053 Deleted edit that tried to change gamma(n) to Gamma(n), and restored original definition. - _N. J. A. Sloane_, Sep 24 2022