cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064106 3rd column of 3rd-order Zeckendorf array A136189.

This page as a plain text file.
%I A064106 #20 Mar 08 2025 14:25:22
%S A064106 3,12,16,22,31,40,44,53,57,63,72,76,82,91,100,104,110,119,128,132,141,
%T A064106 145,151,160,169,173,182,186,192,201,205,211,220,229,233,242,246,252,
%U A064106 261,265,271,280,289,293,299,308,317,321,330,334,340,349,353,359,368
%N A064106 3rd column of 3rd-order Zeckendorf array A136189.
%H A064106 A.H.M. Smeets, <a href="/A064106/b064106.txt">Table of n, a(n) for n = 1..20000</a>
%H A064106 Jeffrey Shallit, <a href="https://arxiv.org/abs/2503.01026">The Narayana Morphism and Related Words</a>, arXiv:2503.01026 [math.CO], 2025.
%F A064106 Any number n has a unique representation as a sum of terms from {3, 4, 6, 9, 13, 19, ...} (cf. A000930) such that no two terms are adjacent or pen-adjacent; e.g. 12=9+3. Sequence gives all n where that representation involves 3.
%F A064106 a(n) = A064105(n) + A202342(n). - _Alan Michael Gómez Calderón_, Dec 22 2024
%Y A064106 Cf. A020942, A064105, A136189, A202342.
%K A064106 easy,nonn
%O A064106 1,1
%A A064106 _Naohiro Nomoto_, Sep 17 2001
%E A064106 Offset corrected by _N. J. A. Sloane_, Apr 29 2024