This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A064110 #6 Jun 12 2023 16:56:42 %S A064110 1,2,23,263,2917,38639,603311,11093633,236524303,5782539281 %N A064110 Let s(n) = n-th single prime (cf. A007510). Sequence is defined by recurrence a(n+1) = s(a(n)), n = 0,1,2,..., a(0)=1. %C A064110 This is the "isolated prime Eratosthenes progression at base 1 (ipep(1))". The next ipep are: ipep(3) = 3, 37, 397, 4751, 64403, 1038629, 19661749,...; ipep(4) = 4, 47, 491, 5897, 81131, 1328167, 25467419,...; ipep(5) = 5, 53, 557, 6709, 93287, 1541191, 29778547,...; ...; ipep(22)= 22, 257, 2861, 37799, 589181, 10821757, 230452837,... ipep(24)= 24, 277, 3079, 40823, 640121, 11807167, 252480587,... and so on. %C A064110 In the terminology of A007097 the name is "isolated_prime-th recurrence ..." %D A064110 "Isolated Primes", by Richard L. Francis, J. Rec. Math., 11 (1978), 17-22. %Y A064110 Cf. A007097, A063502. %K A064110 hard,nonn %O A064110 0,2 %A A064110 _Lubomir Alexandrov_, Sep 07 2001 %E A064110 a(9) from _Sean A. Irvine_, Jun 12 2023